【JDK8】HashMap集合 源码阅读

    JDK8的HashMap数据结构上复杂了很多,因此读取效率得以大大提升,关于源码中红黑树的增删改查,博主没有细读,会在下一篇博文中使用Java实现红黑树的增删改查。

    下面是类的结构图:

     代码(摘抄自JDK):

import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.*;



/**
 * hashMap
 * 作为Kit ,保证健壮、高效,然后才是可阅读性
 * http://www.mamicode.com/info-detail-2219646.html
 * java红黑树:
 * http://www.cnblogs.com/skywang12345/p/3624343.html
 * hashMap中概念解读
 * https://blog.csdn.net/fan2012huan/article/details/51087722
 * hashmap解读:
 * https://blog.csdn.net/AJ1101/article/details/79413939#commentBox
 * <p>
 * 概念摘抄:
 * 约定前面的数组结构的每一个格格称为桶
 * 约定桶后面存放的每一个数据称为bin
 * bin这个术语来自于JDK 1.8的HashMap注释。
 *
 * @param <K>
 * @param <V>
 * @author jdk
 */
public class HappyMap<K, V> extends HashMap<K, V>
        implements Map<K, V> {
    /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     * 最大容量,如果一个更高的值被构造函数用参数隐式指定,那么依旧使用这个容量
     * <p>
     * 必须是2的次方
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;
    /**
     * 当没有在构造函数里面指定,将使用这个默认负载因子
     * The load factor used when none specified in constructor
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     * 一个bucket的树化阈值(红黑树)
     * <p>
     * 为bin使用tree还是list一个bin数目阈值。在至少达到这个数目节点的情况下增加元素,bins将会转化成tree。该值必须大于2,至少应该是8,与移除树的假设相适应。
     */
    static final int TREEIFY_THRESHOLD = 8;
    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     * 一个树的链表还原阈值
     * <p>
     * 在调整大小操作时反树化(切分)一个bin的bin数目阈值,在移除时检测最大是6。
     */
    static final int UNTREEIFY_THRESHOLD = 6;
    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     * 树形化时bins的最小哈希表容量(否则如果bin中有太多的节点就对哈希表调整大小)。
     * 为避免在调整大小和树形化阈值之间产生矛盾,这个值至少是4 * TREEIFY_THERSHOLD。
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * NODE-use HashMap
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K, V> implements Map.Entry<K, V> {
        final int hash;
        final K key;
        V value;
        HappyMap.Node<K, V> next;

        Node(int hash, K key, V value, HappyMap.Node<K, V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        @Override
        public final K getKey() {
            return key;
        }

        @Override
        public final V getValue() {
            return value;
        }

        @Override
        public final String toString() {
            return key + "=" + value;
        }

        @Override
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        @Override
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        @Override
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /**
     * Create a tree bin node
     */
    HappyMap.TreeNode<K, V> newTreeNode(int hash, K key, V value, HappyMap.Node<K, V> next) {
        return new HappyMap.TreeNode<>(hash, key, value, next);
    }
    /* ---------------- Static utilities(没抄) -------------- */

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient HappyMap.Node<K, V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K, V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     * threshold表示当HashMap的size大于threshold时会执行resize操作。
     * threshold=capacity*loadFactor
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HappyMap() {
        // all other fields defaulted
        this.loadFactor = DEFAULT_LOAD_FACTOR;
    }

    /* ---------------- Public operations -------------- */


    @Override
    public Set<Entry<K, V>> entrySet() {
        return null;
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
    @Override
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    @Override
    public boolean isEmpty() {
        return size == 0;
    }


    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key   key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     * <tt>null</tt> if there was no mapping for <tt>key</tt>.
     * (A <tt>null</tt> return can also indicate that the map
     * previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    @Override
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash         hash for key
     * @param key          the key
     * @param value        the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict        if false, the table is in creation mode.
     * @return previous value, or null if none
     */

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        HappyMap.Node<K, V>[] tab;
        HappyMap.Node<K, V> calPosiNode;
        int tabLenth, position;
        //如果 table属性 为空,初始化定义大小,返回新的长度(初始化长度)
        if ((tab = table) == null || (tabLenth = tab.length) == 0) {
            tabLenth = (tab = resize()).length;
        }
        //hash(key)&(n-1)查找位置,如果位置上的Node为null,新建一个Node
        if ((calPosiNode = tab[position = (tabLenth - 1) & hash]) == null) {
            tab[position] = newNode(hash, key, value, null);
        } else {//如果位置上有Node了
            HappyMap.Node<K, V> tempNode;
            K k;
            //新旧元素key值相等(或哈希值相同,地址相等),覆盖
            if (calPosiNode.hash == hash && ((k = calPosiNode.key) == key || (key != null && key.equals(k)))) {
                tempNode = calPosiNode;
                //如果key不相等且是此位置上的RB树节点
            } else if (calPosiNode instanceof HappyMap.TreeNode) {
                tempNode = ((HappyMap.TreeNode<K, V>) calPosiNode).putTreeVal(this, tab, hash, key, value);

            } else {//key 不相等 且非RB树节点
                for (int binCount = 0; ; ++binCount) {
                    // 当链表只有一个头部结点,则新建(append)一个结点
                    if ((tempNode = calPosiNode.next) == null) {
                        calPosiNode.next = newNode(hash, key, value, null);
                        // 链表长度大于8(0 to 7)时,将链表转红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) {
                            treeifyBin(tab, hash);
                        }
                        break;
                    }
                    if (tempNode.hash == hash && ((k = tempNode.key) == key || (key != null && key.equals(k)))) {
                        break;
                    }
                    //更新
                    calPosiNode = tempNode;
                }
            }
            // existing mapping for key
            if (tempNode != null) {
                V oldValue = tempNode.value;
                if (!onlyIfAbsent || oldValue == null) {
                    tempNode.value = value;
                }
                afterNodeAccess(tempNode);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold) {
            resize();
        }

        afterNodeInsertion(evict);
        return null;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(HappyMap.Node<K, V> p) {
    }

    void afterNodeInsertion(boolean evict) {
    }

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     * 初始化或者扩容之后元素调整
     *
     * @return the table
     */
    final HappyMap.Node<K, V>[] resize() {
        HappyMap.Node<K, V>[] oldTab = table;
        //原数组长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //原扩充临界值
        int oldThr = threshold;
        int newCap, newThr = 0;
        //table不为空
        if (oldCap > 0) {
            //如果数组长度达到最大值,则修改临界值为Integer.MAX_VALUE
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //没有达到最大值则容量*2
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY) {
                // doubles threshold
                newThr = oldThr << 1;
            }
        }
        // initial capacity was placed in threshold(直接赋值)
        else if (oldThr > 0) {
            newCap = oldThr;
        }
        // zero initial threshold signifies using defaults(初始化容量与边界)
        else {
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float) newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
                    (int) ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes", "unchecked"})
        HappyMap.Node<K, V>[] newTab = (HappyMap.Node<K, V>[]) new HappyMap.Node[newCap];
        table = newTab;
        // 调整数组大小之后,需要调整红黑树或者链表的指向
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                HappyMap.Node<K, V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null) {
                        newTab[e.hash & (newCap - 1)] = e;
                    }
                    // 红黑树调整
                    else if (e instanceof HappyMap.TreeNode) {
                        ((HappyMap.TreeNode<K, V>) e).split(this, newTab, j, oldCap);
                    }
                    // preserve order链表顺序调整
                    else {
                        HappyMap.Node<K, V> loHead = null, loTail = null;
                        HappyMap.Node<K, V> hiHead = null, hiTail = null;
                        HappyMap.Node<K, V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            } else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    // Create a regular (non-tree) node
    HappyMap.Node<K, V> newNode(int hash, K key, V value, HappyMap.Node<K, V> next) {
        return new HappyMap.Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    HappyMap.Node<K, V> replacementNode(HappyMap.Node<K, V> p, HappyMap.Node<K, V> next) {
        return new HappyMap.Node<>(p.hash, p.key, p.value, next);
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     * bin(Node)转换为 TreeNode
     */
    final void treeifyBin(HappyMap.Node<K, V>[] tab, int hash) {
        int n, index;
        HappyMap.Node<K, V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) {
            resize();
        } else if ((e = tab[index = (n - 1) & hash]) != null) {
            HappyMap.TreeNode<K, V> hd = null, tl = null;
            do {
                //Node转TreeNode
                HappyMap.TreeNode<K, V> p = replacementTreeNode(e, null);
                if (tl == null) {
                    hd = p;
                } else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null) {
                //转为红黑树
                hd.treeify(tab);
            }

        }
    }

    // For treeifyBin
    HappyMap.TreeNode<K, V> replacementTreeNode(HappyMap.Node<K, V> p, HappyMap.Node<K, V> next) {
        return new HappyMap.TreeNode<>(p.hash, p.key, p.value, next);
    }
    /**
     * HashMap.Node subclass for normal LinkedHashMap entries.
     */
    /* ------------------------------------------------------------ */

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c;
            Type[] ts, as;
            Type t;
            ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType) t).getRawType() ==
                                    Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable) k).compareTo(x));
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    @Override
    public V get(Object key) {
        HappyMap.Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key  the key
     * @return the node, or null if none
     */
    final HappyMap.Node<K, V> getNode(int hash, Object key) {
        HappyMap.Node<K, V>[] tab;
        HappyMap.Node<K, V> first, e;
        int n;
        K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof HappyMap.TreeNode)
                    return ((HappyMap.TreeNode<K, V>) first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K, V> extends HappyMap.Node<K, V> {
        HappyMap.Entry<K, V> before, after;
//        TreeNode(int hash, K key, V value, HappyMap.Node<K,V> next) {
//            super(hash, key, value, next);
//        }

        HappyMap.TreeNode<K, V> parent;  // red-black tree links
        HappyMap.TreeNode<K, V> left;
        HappyMap.TreeNode<K, V> right;
        HappyMap.TreeNode<K, V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, HappyMap.Node<K, V> next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         */
        final HappyMap.TreeNode<K, V> root() {
            for (HappyMap.TreeNode<K, V> r = this, p; ; ) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         */
        static <K, V> void moveRootToFront(HappyMap.Node<K, V>[] tab, HappyMap.TreeNode<K, V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                HappyMap.TreeNode<K, V> first = (HappyMap.TreeNode<K, V>) tab[index];
                if (root != first) {
                    HappyMap.Node<K, V> rn;
                    tab[index] = root;
                    HappyMap.TreeNode<K, V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((HappyMap.TreeNode<K, V>) rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final HappyMap.TreeNode<K, V> find(int h, Object k, Class<?> kc) {
            HappyMap.TreeNode<K, V> p = this;
            do {
                int ph, dir;
                K pk;
                HappyMap.TreeNode<K, V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                        (kc = comparableClassFor(k)) != null) &&
                        (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final HappyMap.TreeNode<K, V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                    (d = a.getClass().getName().
                            compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         * 将链表中每个值进行红黑树插入操作
         *
         * @return root of tree
         */
        final void treeify(HappyMap.Node<K, V>[] tab) {
            HappyMap.TreeNode<K, V> root = null;
            for (HappyMap.TreeNode<K, V> x = this, next; x != null; x = next) {
                next = (HappyMap.TreeNode<K, V>) x.next;
                // 初始化Root
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                } else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    //TREENODE节点插入
                    for (HappyMap.TreeNode<K, V> p = root; ; ) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h) {
                            dir = -1;
                        } else if (ph < h) {
                            dir = 1;
                        } else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0) {
                            dir = tieBreakOrder(k, pk);
                        }
                        HappyMap.TreeNode<K, V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final HappyMap.Node<K, V> untreeify(HappyMap<K, V> map) {
            HappyMap.Node<K, V> hd = null, tl = null;
            for (HappyMap.Node<K, V> q = this; q != null; q = q.next) {
                HappyMap.Node<K, V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         * 红黑树节点插入
         */
        final HappyMap.TreeNode<K, V> putTreeVal(HappyMap<K, V> map,
                                                 HappyMap.Node<K, V>[] tab,
                                                 int h,
                                                 K k,
                                                 V v) {
            Class<?> kc = null;
            boolean searched = false;
            HappyMap.TreeNode<K, V> root = (parent != null) ? root() : this;
            for (HappyMap.TreeNode<K, V> p = root; ; ) {
                int dir, ph;
                K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                        (kc = comparableClassFor(k)) == null) ||
                        (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        HappyMap.TreeNode<K, V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                                (q = ch.find(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                        (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                HappyMap.TreeNode<K, V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    HappyMap.Node<K, V> xpn = xp.next;
                    HappyMap.TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((HappyMap.TreeNode<K, V>) xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HappyMap<K, V> map, HappyMap.Node<K, V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            HappyMap.TreeNode<K, V> first = (HappyMap.TreeNode<K, V>) tab[index], root = first, rl;
            HappyMap.TreeNode<K, V> succ = (HappyMap.TreeNode<K, V>) next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                    (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            HappyMap.TreeNode<K, V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                HappyMap.TreeNode<K, V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red;
                s.red = p.red;
                p.red = c; // swap colors
                HappyMap.TreeNode<K, V> sr = s.right;
                HappyMap.TreeNode<K, V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                } else {
                    HappyMap.TreeNode<K, V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            } else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                HappyMap.TreeNode<K, V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            HappyMap.TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                HappyMap.TreeNode<K, V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map   the map
         * @param tab   the table for recording bin heads
         * @param index the index of the table being split
         * @param bit   the bit of hash to split on
         */
        final void split(HappyMap<K, V> map, HappyMap.Node<K, V>[] tab, int index, int bit) {
            HappyMap.TreeNode<K, V> b = this;
            // Relink into lo and hi lists, preserving order
            HappyMap.TreeNode<K, V> loHead = null, loTail = null;
            HappyMap.TreeNode<K, V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (HappyMap.TreeNode<K, V> e = b, next; e != null; e = next) {
                next = (HappyMap.TreeNode<K, V>) e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                } else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static <K, V> HappyMap.TreeNode<K, V> rotateLeft(HappyMap.TreeNode<K, V> root,
                                                         HappyMap.TreeNode<K, V> p) {
            HappyMap.TreeNode<K, V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        static <K, V> HappyMap.TreeNode<K, V> rotateRight(HappyMap.TreeNode<K, V> root,
                                                          HappyMap.TreeNode<K, V> p) {
            HappyMap.TreeNode<K, V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        /**
         * 插入后的平衡操作
         *
         * @param root
         * @param x
         * @param <K>
         * @param <V>
         * @return
         */
        static <K, V> HappyMap.TreeNode<K, V> balanceInsertion(HappyMap.TreeNode<K, V> root,
                                                               HappyMap.TreeNode<K, V> x) {
            x.red = true;
            for (HappyMap.TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                //空
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                //root
                else if (!xp.red || (xpp = xp.parent) == null) {
                    return root;
                }

                //左子树插入
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                } else {
                    //右子树插入
                    // 祖父结点不为空,并且颜色为红色时
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        // 左子树插入
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        // x 的父亲结点设置成黑色
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                // 左旋
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K, V> HappyMap.TreeNode<K, V> balanceDeletion(HappyMap.TreeNode<K, V> root,
                                                              HappyMap.TreeNode<K, V> x) {
            for (HappyMap.TreeNode<K, V> xp, xpl, xpr; ; ) {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                } else if (x.red) {
                    x.red = false;
                    return root;
                } else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        HappyMap.TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        } else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                } else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        HappyMap.TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                                (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        } else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K, V> boolean checkInvariants(HappyMap.TreeNode<K, V> t) {
            HappyMap.TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = (HappyMap.TreeNode<K, V>) t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}

猜你喜欢

转载自blog.csdn.net/the_fool_/article/details/84031580