HashMap源码分析(基于JDK8)

HashMap简介

         HashMap基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

  值得注意的是HashMap不是线程安全的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap。

  • HashMap简介 HashMap是基于哈希表实现的,每一个元素都是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阈值)时,同样会自动增长。
  • HashMap是非线程安全的,只是用于单线程环境下,多线程环境下可以采用concurrent并发包下的concurrentHashMap。
  • HashMap实现了Serializable接口,因此它支持序列化,实现了Cloneable接口,能被克隆。
Map map = Collections.synchronizedMap(new HashMap());

HashMap的数据结构

          HashMap的底层主要是基于数组和链表来实现的,它之所以有相当快的查询速度主要是因为它是通过计算散列码来决定存储的位置。HashMap中主要是通过key的hashCode来计算hash值的,只要hashCode相同,计算出来的hash值就一样。如果存储的对象对多了,就有可能不同的对象所算出来的hash值是相同的,这就出现了所谓的hash冲突。学过数据结构的同学都知道,解决hash冲突的方法有很多,HashMap底层是通过链表来解决hash冲突的。
          下面一幅图,形象的反映出HashMap的数据结构:数组加链表实现

                                        

HashMap属性

下面是一些比较重要的属性,我们先预览一下

    //树化链表节点的阈值,当某个链表的长度大于或者等于这个长度,则扩大数组容量,或者数化链表
	static final int TREEIFY_THRESHOLD = 8;
    //初始容量,必须是2的倍数,默认是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 
    //最大所能容纳的key-value 个数
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //默认的加载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
 
	
	//存储数据的Node数组,长度是2的幂。
    transient Node<K,V>[] table;
 
    //keyset 方法要返回的结果
    transient Set<Map.Entry<K,V>> entrySet;
 
     //map中保存的键值对的数量
    transient int size;
 
    //hashmap 对象被修改的次数
    transient int modCount;
 
    // 容量乘以装在因子所得结果,如果key-value的 数量等于该值,则调用resize方法,扩大容量,同时修改threshold的值。
    int threshold;
 
    //装载因子
    final float loadFactor;
	

构造方法

默认构造方法

默认构造方法将使用默认的加载因子(0.75)初始化。

    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

HashMap(int initialCapacity, float loadFactor)  

使用指定的初始容量和默认的加载因子初始化HashMap,这里需要注意的是,并不是你指定的初始容量是多少那么初始化之后的HashMap的容量就是多大,例如new HashMap(20,0.8); 那么实际的初始化容量是32,因为tableSizeFor()方法会严格要求把初始化的容量是以2的次方数成长只能是16、32、64、128...

扫描二维码关注公众号,回复: 3039059 查看本文章
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

下面我们来看看tableSizeFor方法的实现:

    /**
     * 根据入参 返回2的指数 容量值
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

HashMap(int initialCapacity)  

其实这个方法也是调用HashMap(int initialCapacity, float loadFactor)   方法实现的,我们来看看源码实现:

    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

HashMap(Map<? extends K, ? extends V> m)

该方法是按照之前的hashMap的对象,重新深拷贝一份HashMap对象,使用的加载因子是默认的加载因子:0.75。

    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

put方法

执行逻辑:
1)根据key计算当前Node的hash值,用于定位对象在HashMap数组的哪个节点。
2)判断table有没有初始化,如果没有初始化,则调用resize()方法为table初始化容量,以及threshold的值。
3)根据hash值定位该key 对应的数组索引,如果对应的数组索引位置无值,则调用newNode()方法,为该索引创建Node节点
4)如果根据hash值定位的数组索引有Node,并且Node中的key和需要新增的key相等,则将对应的value值更新。
5)如果在已有的table中根据hash找到Node,其中Node中的hash值和新增的hash相等,但是key值不相等的,那么创建新的Node,放到当前已存在的Node的链表尾部。
      如果当前Node的长度大于8,则调用treeifyBin()方法扩大table数组的容量,或者将当前索引的所有Node节点变成TreeNode节点,变成TreeNode节点的原因是由于TreeNode节点组成的链表索引元素会快很多。
5)将当前的key-value 数量标识size自增,然后和threshold对比,如果大于threshold的值,则调用resize()方法,扩大当前HashMap对象的存储容量。
6)返回oldValue或者null。
put 方法比较经常使用的方法,主要功能是为HashMap对象添加一个Node 节点,如果Node存在则更新Node里面的内容。

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

put的主要的实现逻辑还是在putVal 实现的.下面我们来看看put主要实现逻辑:

    /**
     * Implements Map.put and related methods
     *
     * @param key的hash值
     * @param key值
     * @param value值
     * @param onlyIfAbsent如果是true,则不修改已存在的value值
     * @param evict if false, the table is in creation mode.
     * @return 返回被修改的value,或者返回null。
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
	  //如果是第一次调用,则会调用resize 初始化table 以及threshold
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
	   //如果对应的索引没有Node,则新建Node放到table里面。
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
		//如果hash值与已存在的hash相等,并且key相等,则准备更新对应Node的value
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
		//如果hash值一致,但是key不一致,那么将新的key-value添加到已有的Node的最后面
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // 当某个节点的链表长度大于8,则扩大table 数组的长度或者将当前节点链表变成树节点链表
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
		   //hash值和key值相等的情况下,更新value值
                    e.value = value;
		//留给LinkedHashMap实现
                afterNodeAccess(e);
		//返回旧的value
                return oldValue;
            }
        }
	//修改次数加1
        ++modCount;
	//判断table的容量是否需要扩展
        if (++size > threshold)
            resize();
	//留给LinkedHashMap扩展
        afterNodeInsertion(evict);
        return null;
    }

上面调用到了一个resize方法, 我们来看看这个方法里面做了什么,实现逻辑如下:
1)如果当前数组为空,则初始化当前数组

2)如果当前table数组不为空,则将当前的table数组扩大两倍,同时将阈值(threshold)扩大两倍

      数组长度和阈值扩大成两倍之后,将之前table数组中的值全部放到新的table中去

        /**
         * 初始化,或者是扩展table 的容量。
         * table的容量是按照2的指数增长的。
	 * 当扩大table 的容量的时候,元素的hash值以及位置可能发生变化。
	 */
	 final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
	//当前table 数组的长度
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
	//当前的阈值
        int oldThr = threshold;
        int newCap, newThr = 0;
	//如果table数组已有值,则将其容量(size)和阈值(threshold)扩大两倍
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {  // 当第一次调用resize的时候会执行这个代码,初始化table容量以及阈值
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
	//将新的阈值存储起来
        threshold = newThr;
	//重新分配table 的容量
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
	//将以前table中的值copy到新的table中去
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }	

下面我们来看看treeifyBin方法的具体实现

    /**
     * 如果table长度太小,则扩大table 的数组长度
     * 否则,将所有链表节点变成TreeNode,提高索引效率
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

get方法

根据key的hash值和key,可以唯一确定一个value,下面我们来看看get方法执行的逻辑

1)根据key计算hash值

2)根据hash值和key  确定所需要返回的结果,如果不存在,则返回空。

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

具体的实现在getNode方法实现

    /**
     * Implements Map.get and related methods
     *
     * @param key 的hash值
     * @param key的值
     * @return 返回由key和hash定位的Node,或者null
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // 如果索引到的第一个Node,key 和 hash值都和传递进来的参数相等,则返回该Node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) { //如果索引到的第一个Node 不符合要求,循环变量它的下一个节点。
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

containsKey方法

containsKey方法实际也是调用getNode方法实现的,如果key对应的value不存在则返回false

    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

containsValue方法

containsValue方法的话需要遍历对象所有的value,遇到value相等的,则返回true,具体实现如下

    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

remove方法

执行逻辑:
1)根据key得到key的hash值
2)根据key 和hash值定位需要remove的Node
3)  将Node从对应的链表移除,然后再将Node 前后的节点对接起来
4)返回被移除 的Node
5)key-value的数量减一,修改次数加一

    /**
     * Implements Map.remove and related methods
     *
     * @param key的hash值
     * @param key值
     * @param 需要remove 的value,
     * @param 为true时候,当value相等的时候才remove
     * @param 如果为false 的时候,不会移动其他节点。
     * @return 返回被移除的Node,或者返回null
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&  //如果定位到的第一个元素符合条件,则跳出if else
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {//定位到的第一个Node元素不符合条件,则遍历其链表
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
	   //移除符合要求的节点,将链表重新连接起来
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
		//修改次数加1
                ++modCount;
		//当前的key-value 对数减一
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;

replace方法

replace(K key, V oldValue, V newValue)

根据key和value定位到Node,然后将Node中的value用新value 替换,返回旧的value,否则返回空。

    public boolean replace(K key, V oldValue, V newValue) {
        Node<K,V> e; V v;
        if ((e = getNode(hash(key), key)) != null &&
            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

replace(K key, V value)

根据key定位到Node,然后将Node中的value 替换,返回旧的value,否则返回空

    public V replace(K key, V value) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

clear方法

clear 方法将每个数组元素置空

 public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

几点总结

1、首先要清楚HashMap的存储结构,如下图所示:

                                                     

图中,紫色部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。

2、首先看链表中节点的数据结构:

// Entry是单向链表。    
// 它是 “HashMap链式存储法”对应的链表。    
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数    
static class Entry<K,V> implements Map.Entry<K,V> {    
    final K key;    
    V value;    
    // 指向下一个节点    
    Entry<K,V> next;    
    final int hash;    
  
    // 构造函数。    
    // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"    
    Entry(int h, K k, V v, Entry<K,V> n) {    
        value = v;    
        next = n;    
        key = k;    
        hash = h;    
    }    
  
    public final K getKey() {    
        return key;    
    }    
  
    public final V getValue() {    
        return value;    
    }    
  
    public final V setValue(V newValue) {    
        V oldValue = value;    
        value = newValue;    
        return oldValue;    
    }    
  
    // 判断两个Entry是否相等    
    // 若两个Entry的“key”和“value”都相等,则返回true。    
    // 否则,返回false    
    public final boolean equals(Object o) {    
        if (!(o instanceof Map.Entry))    
            return false;    
        Map.Entry e = (Map.Entry)o;    
        Object k1 = getKey();    
        Object k2 = e.getKey();    
        if (k1 == k2 || (k1 != null && k1.equals(k2))) {    
            Object v1 = getValue();    
            Object v2 = e.getValue();    
            if (v1 == v2 || (v1 != null && v1.equals(v2)))    
                return true;    
        }    
        return false;    
    }    
  
    // 实现hashCode()    
    public final int hashCode() {    
        return (key==null   ? 0 : key.hashCode()) ^    
               (value==null ? 0 : value.hashCode());    
    }    
  
    public final String toString() {    
        return getKey() + "=" + getValue();    
    }    
  
    // 当向HashMap中添加元素时,绘调用recordAccess()。    
    // 这里不做任何处理    
    void recordAccess(HashMap<K,V> m) {    
    }    
  
    // 当从HashMap中删除元素时,绘调用recordRemoval()。    
    // 这里不做任何处理    
    void recordRemoval(HashMap<K,V> m) {    
    }    
}

它的结构元素除了key、value、hash外,还有next,next指向下一个节点。另外,这里覆写了equals和hashCode方法来保证键值对的独一无二。

3、HashMap共有四个构造方法。构造方法中提到了两个很重要的参数:初始容量和加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中槽的数量(即哈希数组的长度),初始容量是创建哈希表时的容量(从构造函数中可以看出,如果不指明,则默认为16),加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 resize 操作(即扩容)。

下面说下加载因子,如果加载因子越大,对空间的利用更充分,但是查找效率会降低(链表长度会越来越长);如果加载因子太小,那么表中的数据将过于稀疏(很多空间还没用,就开始扩容了),对空间造成严重浪费。如果我们在构造方法中不指定,则系统默认加载因子为0.75,这是一个比较理想的值,一般情况下我们是无需修改的。

另外,无论我们指定的容量为多少,构造方法都会将实际容量设为不小于指定容量的2的次方的一个数,且最大值不能超过2的30次方

4、HashMap中key和value都允许为null。

5、要重点分析下HashMap中用的最多的两个方法put和get。先从比较简单的get方法着手,源码如下:

// 获取key对应的value    
public V get(Object key) {    
    if (key == null)    
        return getForNullKey();    
    // 获取key的hash值    
    int hash = hash(key.hashCode());    
    // 在“该hash值对应的链表”上查找“键值等于key”的元素    
    for (Entry<K,V> e = table[indexFor(hash, table.length)];    
         e != null;    
         e = e.next) {    
        Object k;    
/判断key是否相同  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k)))    
            return e.value;    
    }  
没找到则返回null  
    return null;    
}    
  
// 获取“key为null”的元素的值    
// HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!    
private V getForNullKey() {    
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {    
        if (e.key == null)    
            return e.value;    
    }    
    return null;    
}

首先,如果key为null,则直接从哈希表的第一个位置table[0]对应的链表上查找。记住,key为null的键值对永远都放在以table[0]为头结点的链表中,当然不一定是存放在头结点table[0]中。

如果key不为null,则先求的key的hash值,根据hash值找到在table中的索引,在该索引对应的单链表中查找是否有键值对的key与目标key相等,有就返回对应的value,没有则返回null。

put方法稍微复杂些,代码如下:

// 将“key-value”添加到HashMap中    
  public V put(K key, V value) {    
      // 若“key为null”,则将该键值对添加到table[0]中。    
      if (key == null)    
          return putForNullKey(value);    
      // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。    
      int hash = hash(key.hashCode());    
      int i = indexFor(hash, table.length);    
      for (Entry<K,V> e = table[i]; e != null; e = e.next) {    
          Object k;    
          // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!    
          if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {    
              V oldValue = e.value;    
              e.value = value;    
              e.recordAccess(this);    
              return oldValue;    
          }    
      }    
  
      // 若“该key”对应的键值对不存在,则将“key-value”添加到table中    
      modCount++;  
//将key-value添加到table[i]处  
      addEntry(hash, key, value, i);    
      return null;    
  }

如果key为null,则将其添加到table[0]对应的链表中,putForNullKey的源码如下:

// putForNullKey()的作用是将“key为null”键值对添加到table[0]位置    
private V putForNullKey(V value) {    
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {    
        if (e.key == null) {    
            V oldValue = e.value;    
            e.value = value;    
            e.recordAccess(this);    
            return oldValue;    
        }    
    }    
    // 如果没有存在key为null的键值对,则直接题阿见到table[0]处!    
    modCount++;    
    addEntry(0, null, value, 0);    
    return null;    
}

如果key不为null,则同样先求出key的hash值,根据hash值得出在table中的索引,而后遍历对应的单链表,如果单链表中存在与目标key相等的键值对,则将新的value覆盖旧的value,比将旧的value返回,如果找不到与目标key相等的键值对,或者该单链表为空,则将该键值对插入到改单链表的头结点位置(每次新插入的节点都是放在头结点的位置),该操作是有addEntry方法实现的,它的源码如下:

// 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。    
void addEntry(int hash, K key, V value, int bucketIndex) {    
    // 保存“bucketIndex”位置的值到“e”中    
    Entry<K,V> e = table[bucketIndex];    
    // 设置“bucketIndex”位置的元素为“新Entry”,    
    // 设置“e”为“新Entry的下一个节点”    
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);    
    // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小    
    if (size++ >= threshold)    
        resize(2 * table.length);    
}

注意这里倒数第三行的构造方法,将key-value键值对赋给table[bucketIndex],并将其next指向元素e,这便将key-value放到了头结点中,并将之前的头结点接在了它的后面。该方法也说明,每次put键值对的时候,总是将新的该键值对放在table[bucketIndex]处(即头结点处)。

两外注意最后两行代码,每次加入键值对时,都要判断当前已用的槽的数目是否大于等于阀值(容量*加载因子),如果大于等于,则进行扩容,将容量扩为原来容量的2倍。

6、关于扩容。上面我们看到了扩容的方法,resize方法,它的源码如下:

// 重新调整HashMap的大小,newCapacity是调整后的单位    
void resize(int newCapacity) {    
    Entry[] oldTable = table;    
    int oldCapacity = oldTable.length;    
    if (oldCapacity == MAXIMUM_CAPACITY) {    
        threshold = Integer.MAX_VALUE;    
        return;    
    }    
  
    // 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,    
    // 然后,将“新HashMap”赋值给“旧HashMap”。    
    Entry[] newTable = new Entry[newCapacity];    
    transfer(newTable);    
    table = newTable;    
    threshold = (int)(newCapacity * loadFactor);    
}

很明显,是新建了一个HashMap的底层数组,而后调用transfer方法,将就HashMap的全部元素添加到新的HashMap中(要重新计算元素在新的数组中的索引位置)。transfer方法的源码如下:

// 将HashMap中的全部元素都添加到newTable中    
void transfer(Entry[] newTable) {    
    Entry[] src = table;    
    int newCapacity = newTable.length;    
    for (int j = 0; j < src.length; j++) {    
        Entry<K,V> e = src[j];    
        if (e != null) {    
            src[j] = null;    
            do {    
                Entry<K,V> next = e.next;    
                int i = indexFor(e.hash, newCapacity);    
                e.next = newTable[i];    
                newTable[i] = e;    
                e = next;    
            } while (e != null);    
        }    
    }    
}

很明显,扩容是一个相当耗时的操作,因为它需要重新计算这些元素在新的数组中的位置并进行复制处理。因此,我们在用HashMap的时,最好能提前预估下HashMap中元素的个数,这样有助于提高HashMap的性能。

7、注意containsKey方法和containsValue方法。前者直接可以通过key的哈希值将搜索范围定位到指定索引对应的链表,而后者要对哈希数组的每个链表进行搜索。

8、我们重点来分析下求hash值和索引值的方法,这两个方法便是HashMap设计的最为核心的部分,二者结合能保证哈希表中的元素尽可能均匀地散列。

计算哈希值的方法如下:

static int hash(int h) {  
        h ^= (h >>> 20) ^ (h >>> 12);  
        return h ^ (h >>> 7) ^ (h >>> 4);  
    }

它只是一个数学公式,IDK这样设计对hash值的计算,自然有它的好处,至于为什么这样设计,我们这里不去追究,只要明白一点,用的位的操作使hash值的计算效率很高。

由hash值找到对应索引的方法如下:

static int indexFor(int h, int length) {  
        return h & (length-1);  
    }

这个我们要重点说下,我们一般对哈希表的散列很自然地会想到用hash值对length取模(即除法散列法),Hashtable中也是这样实现的,这种方法基本能保证元素在哈希表中散列的比较均匀,但取模会用到除法运算,效率很低,HashMap中则通过h&(length-1)的方法来代替取模,同样实现了均匀的散列,但效率要高很多,这也是HashMap对Hashtable的一个改进。

接下来,我们分析下为什么哈希表的容量一定要是2的整数次幂。首先,length为2的整数次幂的话,h&(length-1)就相当于对length取模,这样便保证了散列的均匀,同时也提升了效率;其次,length为2的整数次幂的话,为偶数,这样length-1为奇数,奇数的最后一位是1,这样便保证了h&(length-1)的最后一位可能为0,也可能为1(这取决于h的值),即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性,而如果length为奇数的话,很明显length-1为偶数,它的最后一位是0,这样h&(length-1)的最后一位肯定为0,即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间,因此,length取2的整数次幂,是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列。

原文来源:

https://blog.csdn.net/fighterandknight/article/details/61624150

https://github.com/francistao/LearningNotes/blob/master/Part2/JavaSE/HashMap%E6%BA%90%E7%A0%81%E5%89%96%E6%9E%90.md

猜你喜欢

转载自blog.csdn.net/augfun/article/details/82323201