数据结构与算法之查找总结

大话数据结构--查找

1、顺序表查找

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 /* 存储空间初始分配量 */

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */ 

int F[100]; /* 斐波那契数列 */

/* 无哨兵顺序查找,a为数组,n为要查找的数组个数,key为要查找的关键字 */
int Sequential_Search(int *a,int n,int key)
{
	int i;
	for(i=1;i<=n;i++)
	{
		if (a[i]==key)
			return i;
	}
	return 0;
}
/* 有哨兵顺序查找 */
int Sequential_Search2(int *a,int n,int key)
{
	int i;
	a[0]=key;
	i=n;
	while(a[i]!=key)
	{
		i--;
	}
	return i;
}

/* 折半查找 */
int Binary_Search(int *a,int n,int key)
{
	int low,high,mid;
	low=1;	/* 定义最低下标为记录首位 */
	high=n;	/* 定义最高下标为记录末位 */
	while(low<=high)
	{
		mid=(low+high)/2;	/* 折半 */
		if (key<a[mid])		/* 若查找值比中值小 */
			high=mid-1;		/* 最高下标调整到中位下标小一位 */
		else if (key>a[mid])/* 若查找值比中值大 */
			low=mid+1;		/* 最低下标调整到中位下标大一位 */
		else
		{
			return mid;		/* 若相等则说明mid即为查找到的位置 */
		}
		
	}
	return 0;
}

/* 插值查找 */
int Interpolation_Search(int *a,int n,int key)
{
	int low,high,mid;
	low=1;	/* 定义最低下标为记录首位 */
	high=n;	/* 定义最高下标为记录末位 */
	while(low<=high)
	{
		mid=low+ (high-low)*(key-a[low])/(a[high]-a[low]); /* 插值 */
		if (key<a[mid])		/* 若查找值比插值小 */
			high=mid-1;		/* 最高下标调整到插值下标小一位 */
		else if (key>a[mid])/* 若查找值比插值大 */
			low=mid+1;		/* 最低下标调整到插值下标大一位 */
		else
			return mid;		/* 若相等则说明mid即为查找到的位置 */
	}
	return 0;
}

/* 斐波那契查找 */
int Fibonacci_Search(int *a,int n,int key)
{
	int low,high,mid,i,k=0;
	low=1;	/* 定义最低下标为记录首位 */
	high=n;	/* 定义最高下标为记录末位 */
	while(n>F[k]-1)
		k++;
	for (i=n;i<F[k]-1;i++)
		a[i]=a[n];
	
	while(low<=high)
	{
		mid=low+F[k-1]-1;
		if (key<a[mid])
		{
			high=mid-1;		
			k=k-1;
		}
		else if (key>a[mid])
		{
			low=mid+1;		
			k=k-2;
		}
		else
		{
			if (mid<=n)
				return mid;		/* 若相等则说明mid即为查找到的位置 */
			else 
				return n;
		}
		
	}
	return 0;
}
int main(void)
{    

	int a[MAXSIZE+1],i,result;
	int arr[MAXSIZE]={0,1,16,24,35,47,59,62,73,88,99};
		
	for(i=0;i<=MAXSIZE;i++)
	{
		a[i]=i;
	}
	result=Sequential_Search(a,MAXSIZE,MAXSIZE);
	printf("Sequential_Search:%d \n",result);
	result=Sequential_Search2(a,MAXSIZE,1);
	printf("Sequential_Search2:%d \n",result);

	result=Binary_Search(arr,10,62);
	printf("Binary_Search:%d \n",result);

	
	result=Interpolation_Search(arr,10,62);
	printf("Interpolation_Search:%d \n",result);

	
	F[0]=0;
	F[1]=1;
	for(i = 2;i < 100;i++)  
	{ 
		F[i] = F[i-1] + F[i-2];  
	} 
	result=Fibonacci_Search(arr,10,62);
	printf("Fibonacci_Search:%d \n",result);
	
	return 0;
}

2、二叉排序树

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 /* 存储空间初始分配量 */

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */ 

/* 二叉树的二叉链表结点结构定义 */
typedef  struct BiTNode	/* 结点结构 */
{
	int data;	/* 结点数据 */
	struct BiTNode *lchild, *rchild;	/* 左右孩子指针 */
} BiTNode, *BiTree;


/* 递归查找二叉排序树T中是否存在key, */
/* 指针f指向T的双亲,其初始调用值为NULL */
/* 若查找成功,则指针p指向该数据元素结点,并返回TRUE */
/* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */
Status SearchBST(BiTree T, int key, BiTree f, BiTree *p) 
{  
	if (!T)	/*  查找不成功 */
	{ 
		*p = f;  
		return FALSE; 
	}
	else if (key==T->data) /*  查找成功 */
	{ 
		*p = T;  
		return TRUE; 
	} 
	else if (key<T->data) 
		return SearchBST(T->lchild, key, T, p);  /*  在左子树中继续查找 */
	else  
		return SearchBST(T->rchild, key, T, p);  /*  在右子树中继续查找 */
}


/*  当二叉排序树T中不存在关键字等于key的数据元素时, */
/*  插入key并返回TRUE,否则返回FALSE */
Status InsertBST(BiTree *T, int key) 
{  
	BiTree p,s;
	if (!SearchBST(*T, key, NULL, &p)) /* 查找不成功 */
	{
		s = (BiTree)malloc(sizeof(BiTNode));
		s->data = key;  
		s->lchild = s->rchild = NULL;  
		if (!p) 
			*T = s;			/*  插入s为新的根结点 */
		else if (key<p->data) 
			p->lchild = s;	/*  插入s为左孩子 */
		else 
			p->rchild = s;  /*  插入s为右孩子 */
		return TRUE;
	} 
	else 
		return FALSE;  /*  树中已有关键字相同的结点,不再插入 */
}

/* 从二叉排序树中删除结点p,并重接它的左或右子树。 */
Status Delete(BiTree *p)
{
	BiTree q,s;
	if((*p)->rchild==NULL) /* 右子树空则只需重接它的左子树(待删结点是叶子也走此分支) */
	{
		q=*p; *p=(*p)->lchild; free(q);
	}
	else if((*p)->lchild==NULL) /* 只需重接它的右子树 */
	{
		q=*p; *p=(*p)->rchild; free(q);
	}
	else /* 左右子树均不空 */
	{
		q=*p; s=(*p)->lchild;
		while(s->rchild) /* 转左,然后向右到尽头(找待删结点的前驱) */
		{
			q=s;
			s=s->rchild;
		}
		(*p)->data=s->data; /*  s指向被删结点的直接前驱(将被删结点前驱的值取代被删结点的值) */
		if(q!=*p)
			q->rchild=s->lchild; /*  重接q的右子树 */ 
		else
			q->lchild=s->lchild; /*  重接q的左子树 */
		free(s);
	}
	return TRUE;
}

/* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点, */
/* 并返回TRUE;否则返回FALSE。 */
Status DeleteBST(BiTree *T,int key)
{ 
	if(!*T) /* 不存在关键字等于key的数据元素 */ 
		return FALSE;
	else
	{
		if (key==(*T)->data) /* 找到关键字等于key的数据元素 */ 
			return Delete(T);
		else if (key<(*T)->data)
			return DeleteBST(&(*T)->lchild,key);
		else
			return DeleteBST(&(*T)->rchild,key);
		 
	}
}

int main(void)
{    
	int i;
	int a[10]={62,88,58,47,35,73,51,99,37,93};
	BiTree T=NULL;
	
	for(i=0;i<10;i++)
	{
		InsertBST(&T, a[i]);
	}
	DeleteBST(&T,93);
	DeleteBST(&T,47);
    printf("本样例建议断点跟踪查看二叉排序树结构");
	return 0;
}

3、平衡二叉树

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100 /* 存储空间初始分配量 */

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */ 


/* 二叉树的二叉链表结点结构定义 */
typedef  struct BiTNode	/* 结点结构 */
{
	int data;	/* 结点数据 */
	int bf; /*  结点的平衡因子 */ 
	struct BiTNode *lchild, *rchild;	/* 左右孩子指针 */
} BiTNode, *BiTree;


/* 对以p为根的二叉排序树作右旋处理, */
/* 处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点 */
void R_Rotate(BiTree *P)
{ 
	BiTree L;
	L=(*P)->lchild; /*  L指向P的左子树根结点 */ 
	(*P)->lchild=L->rchild; /*  L的右子树挂接为P的左子树 */ 
	L->rchild=(*P);
	*P=L; /*  P指向新的根结点 */ 
}

/* 对以P为根的二叉排序树作左旋处理, */
/* 处理之后P指向新的树根结点,即旋转处理之前的右子树的根结点0  */
void L_Rotate(BiTree *P)
{ 
	BiTree R;
	R=(*P)->rchild; /*  R指向P的右子树根结点 */ 
	(*P)->rchild=R->lchild; /* R的左子树挂接为P的右子树 */ 
	R->lchild=(*P);
	*P=R; /*  P指向新的根结点 */ 
}

#define LH +1 /*  左高 */ 
#define EH 0  /*  等高 */ 
#define RH -1 /*  右高 */ 

/*  对以指针T所指结点为根的二叉树作左平衡旋转处理 */
/*  本算法结束时,指针T指向新的根结点 */
void LeftBalance(BiTree *T)
{ 
	BiTree L,Lr;
	L=(*T)->lchild; /*  L指向T的左子树根结点 */ 
	switch(L->bf)
	{ /*  检查T的左子树的平衡度,并作相应平衡处理 */ 
		 case LH: /*  新结点插入在T的左孩子的左子树上,要作单右旋处理 */ 
			(*T)->bf=L->bf=EH;
			R_Rotate(T);
			break;
		 case RH: /*  新结点插入在T的左孩子的右子树上,要作双旋处理 */ 
			Lr=L->rchild; /*  Lr指向T的左孩子的右子树根 */ 
			switch(Lr->bf)
			{ /*  修改T及其左孩子的平衡因子 */ 
				case LH: (*T)->bf=RH;
						 L->bf=EH;
						 break;
				case EH: (*T)->bf=L->bf=EH;
						 break;
				case RH: (*T)->bf=EH;
						 L->bf=LH;
						 break;
			}
			Lr->bf=EH;
			L_Rotate(&(*T)->lchild); /*  对T的左子树作左旋平衡处理 */ 
			R_Rotate(T); /*  对T作右旋平衡处理 */ 
	}
}

/*  对以指针T所指结点为根的二叉树作右平衡旋转处理, */ 
/*  本算法结束时,指针T指向新的根结点 */ 
void RightBalance(BiTree *T)
{ 
	BiTree R,Rl;
	R=(*T)->rchild; /*  R指向T的右子树根结点 */ 
	switch(R->bf)
	{ /*  检查T的右子树的平衡度,并作相应平衡处理 */ 
	 case RH: /*  新结点插入在T的右孩子的右子树上,要作单左旋处理 */ 
			  (*T)->bf=R->bf=EH;
			  L_Rotate(T);
			  break;
	 case LH: /*  新结点插入在T的右孩子的左子树上,要作双旋处理 */ 
			  Rl=R->lchild; /*  Rl指向T的右孩子的左子树根 */ 
			  switch(Rl->bf)
			  { /*  修改T及其右孩子的平衡因子 */ 
				case RH: (*T)->bf=LH;
						 R->bf=EH;
						 break;
				case EH: (*T)->bf=R->bf=EH;
						 break;
				case LH: (*T)->bf=EH;
						 R->bf=RH;
						 break;
			  }
			  Rl->bf=EH;
			  R_Rotate(&(*T)->rchild); /*  对T的右子树作右旋平衡处理 */ 
			  L_Rotate(T); /*  对T作左旋平衡处理 */ 
	}
}

/*  若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */ 
/*  数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 */ 
/*  失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。 */
Status InsertAVL(BiTree *T,int e,Status *taller)
{  
	if(!*T)
	{ /*  插入新结点,树“长高”,置taller为TRUE */ 
		 *T=(BiTree)malloc(sizeof(BiTNode));
		 (*T)->data=e; (*T)->lchild=(*T)->rchild=NULL; (*T)->bf=EH;
		 *taller=TRUE;
	}
	else
	{
		if (e==(*T)->data)
		{ /*  树中已存在和e有相同关键字的结点则不再插入 */ 
			*taller=FALSE; return FALSE;
		}
		if (e<(*T)->data)
		{ /*  应继续在T的左子树中进行搜索 */ 
			if(!InsertAVL(&(*T)->lchild,e,taller)) /*  未插入 */ 
				return FALSE;
			if(*taller) /*   已插入到T的左子树中且左子树“长高” */ 
				switch((*T)->bf) /*  检查T的平衡度 */ 
				{
					case LH: /*  原本左子树比右子树高,需要作左平衡处理 */ 
							LeftBalance(T);	*taller=FALSE; break;
					case EH: /*  原本左、右子树等高,现因左子树增高而使树增高 */ 
							(*T)->bf=LH; *taller=TRUE; break;
					case RH: /*  原本右子树比左子树高,现左、右子树等高 */  
							(*T)->bf=EH; *taller=FALSE; break;
				}
		}
		else
		{ /*  应继续在T的右子树中进行搜索 */ 
			if(!InsertAVL(&(*T)->rchild,e,taller)) /*  未插入 */ 
				return FALSE;
			if(*taller) /*  已插入到T的右子树且右子树“长高” */ 
				switch((*T)->bf) /*  检查T的平衡度 */ 
				{
					case LH: /*  原本左子树比右子树高,现左、右子树等高 */ 
							(*T)->bf=EH; *taller=FALSE;	break;
					case EH: /*  原本左、右子树等高,现因右子树增高而使树增高  */
							(*T)->bf=RH; *taller=TRUE; break;
					case RH: /*  原本右子树比左子树高,需要作右平衡处理 */ 
							RightBalance(T); *taller=FALSE; break;
				}
		}
	}
	return TRUE;
}

int main(void)
{    
	int i;
	int a[10]={3,2,1,4,5,6,7,10,9,8};
	BiTree T=NULL;
	Status taller;
	for(i=0;i<10;i++)
	{
		InsertAVL(&T,a[i],&taller);
	}
	printf("本样例建议断点跟踪查看平衡二叉树结构");
	return 0;
}

4、B树

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 100 /* 存储空间初始分配量 */

#define m 3 /*  B树的阶,暂设为3 */ 
#define N 17 /*  数据元素个数 */ 
#define MAX 5 /*  字符串最大长度+1  */

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */ 

typedef struct BTNode
{
	int keynum; /*  结点中关键字个数,即结点的大小 */ 
	struct BTNode *parent; /*  指向双亲结点 */ 
	struct Node /*  结点向量类型 */ 
	{
		 int key; /*  关键字向量 */ 
		 struct BTNode *ptr; /*  子树指针向量 */ 
		 int recptr; /*  记录指针向量 */ 
	}node[m+1]; /*  key,recptr的0号单元未用 */ 
}BTNode,*BTree; /*  B树结点和B树的类型 */ 

typedef struct
{
	BTNode *pt; /*  指向找到的结点 */ 
	int i; /*  1..m,在结点中的关键字序号 */ 
	int tag; /*  1:查找成功,O:查找失败 */ 
}Result; /*  B树的查找结果类型 */ 

/*  在p->node[1..keynum].key中查找i,使得p->node[i].key≤K<p->node[i+1].key */ 
int Search(BTree p, int K)
{ 
	int i=0,j;
	for(j=1;j<=p->keynum;j++)
	 if(p->node[j].key<=K)
	   i=j;
	return i;
}

/*  在m阶B树T上查找关键字K,返回结果(pt,i,tag)。若查找成功,则特征值 */ 
/*  tag=1,指针pt所指结点中第i个关键字等于K;否则特征值tag=0,等于K的  */
/*  关键字应插入在指针Pt所指结点中第i和第i+1个关键字之间。 */
Result SearchBTree(BTree T, int K)
{ 
	BTree p=T,q=NULL; /*  初始化,p指向待查结点,q指向p的双亲  */
	Status found=FALSE;
	int i=0;
	Result r;
	while(p&&!found)
	{
	 i=Search(p,K); /*  p->node[i].key≤K<p->node[i+1].key  */
	 if(i>0&&p->node[i].key==K) /*  找到待查关键字 */ 
	   found=TRUE;
	 else
	 {
	   q=p;
	   p=p->node[i].ptr;
	 }
	}
	r.i=i;
	if(found) /*  查找成功  */
	{
	 r.pt=p;
	 r.tag=1;
	}
	else /*   查找不成功,返回K的插入位置信息 */ 
	{
	 r.pt=q;
	 r.tag=0;
	}
	return r;
}

/* 将r->key、r和ap分别插入到q->key[i+1]、q->recptr[i+1]和q->ptr[i+1]中 */ 
void Insert(BTree *q,int i,int key,BTree ap)
{ 
	int j;
	for(j=(*q)->keynum;j>i;j--) /*  空出(*q)->node[i+1]  */
		(*q)->node[j+1]=(*q)->node[j];
	(*q)->node[i+1].key=key;
	(*q)->node[i+1].ptr=ap;
	(*q)->node[i+1].recptr=key;
	(*q)->keynum++;
}

/* 将结点q分裂成两个结点,前一半保留,后一半移入新生结点ap */ 
void split(BTree *q,BTree *ap)
{ 
	int i,s=(m+1)/2;
	*ap=(BTree)malloc(sizeof(BTNode)); /*  生成新结点ap */ 
	(*ap)->node[0].ptr=(*q)->node[s].ptr; /*  后一半移入ap */ 
	for(i=s+1;i<=m;i++)
	{
		 (*ap)->node[i-s]=(*q)->node[i];
		 if((*ap)->node[i-s].ptr)
			(*ap)->node[i-s].ptr->parent=*ap;
	}
	(*ap)->keynum=m-s;
	(*ap)->parent=(*q)->parent;
	(*q)->keynum=s-1; /*  q的前一半保留,修改keynum */ 
}

/* 生成含信息(T,r,ap)的新的根结点&T,原T和ap为子树指针 */ 
void NewRoot(BTree *T,int key,BTree ap)
{ 
	BTree p;
	p=(BTree)malloc(sizeof(BTNode));
	p->node[0].ptr=*T;
	*T=p;
	if((*T)->node[0].ptr)
		(*T)->node[0].ptr->parent=*T;
	(*T)->parent=NULL;
	(*T)->keynum=1;
	(*T)->node[1].key=key;
	(*T)->node[1].recptr=key;
	(*T)->node[1].ptr=ap;
	if((*T)->node[1].ptr)
		(*T)->node[1].ptr->parent=*T;
}

/*  在m阶B树T上结点*q的key[i]与key[i+1]之间插入关键字K的指针r。若引起 */ 
/*  结点过大,则沿双亲链进行必要的结点分裂调整,使T仍是m阶B树。 */
void InsertBTree(BTree *T,int key,BTree q,int i)
{ 
	BTree ap=NULL;
	Status finished=FALSE;
	int s;
	int rx;
	rx=key;
	while(q&&!finished)
	{
		Insert(&q,i,rx,ap); /*  将r->key、r和ap分别插入到q->key[i+1]、q->recptr[i+1]和q->ptr[i+1]中  */
		if(q->keynum<m)
			finished=TRUE; /*  插入完成 */ 
		else
		{ /*  分裂结点*q */ 
			s=(m+1)/2;
			rx=q->node[s].recptr;
			split(&q,&ap); /*  将q->key[s+1..m],q->ptr[s..m]和q->recptr[s+1..m]移入新结点*ap  */
			q=q->parent;
			if(q)
				i=Search(q,key); /*  在双亲结点*q中查找rx->key的插入位置  */
		}
	}
	if(!finished) /*  T是空树(参数q初值为NULL)或根结点已分裂为结点*q和*ap */ 
		NewRoot(T,rx,ap); /*  生成含信息(T,rx,ap)的新的根结点*T,原T和ap为子树指针 */ 
}


void print(BTNode c,int i) /*  TraverseDSTable()调用的函数  */
{
	printf("(%d)",c.node[i].key);
}

int main()
{
	int r[N]={22,16,41,58,8,11,12,16,17,22,23,31,41,52,58,59,61};
	BTree T=NULL;
	Result s;
	int i;
	for(i=0;i<N;i++)
	{
		s=SearchBTree(T,r[i]);
		if(!s.tag)
			InsertBTree(&T,r[i],s.pt,s.i);
	}
	printf("\n请输入待查找记录的关键字: ");
	scanf("%d",&i);
	s=SearchBTree(T,i);
	if(s.tag)
		print(*(s.pt),s.i);
	else
		printf("没找到");
	printf("\n");

	return 0;
}

5、散列表

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 100 /* 存储空间初始分配量 */

#define SUCCESS 1
#define UNSUCCESS 0
#define HASHSIZE 12 /* 定义散列表长为数组的长度 */
#define NULLKEY -32768 

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */ 

typedef struct
{
   int *elem; /* 数据元素存储基址,动态分配数组 */
   int count; /*  当前数据元素个数 */
}HashTable;

int m=0; /* 散列表表长,全局变量 */

/* 初始化散列表 */
Status InitHashTable(HashTable *H)
{
	int i;
	m=HASHSIZE;
	H->count=m;
	H->elem=(int *)malloc(m*sizeof(int));
	for(i=0;i<m;i++)
		H->elem[i]=NULLKEY; 
	return OK;
}

/* 散列函数 */
int Hash(int key)
{
	return key % m; /* 除留余数法 */
}

/* 插入关键字进散列表 */
void InsertHash(HashTable *H,int key)
{
	int addr = Hash(key); /* 求散列地址 */
	while (H->elem[addr] != NULLKEY) /* 如果不为空,则冲突 */
	{
		addr = (addr+1) % m; /* 开放定址法的线性探测 */
	}
	H->elem[addr] = key; /* 直到有空位后插入关键字 */
}

/* 散列表查找关键字 */
Status SearchHash(HashTable H,int key,int *addr)
{
	*addr = Hash(key);  /* 求散列地址 */
	while(H.elem[*addr] != key) /* 如果不为空,则冲突 */
	{
		*addr = (*addr+1) % m; /* 开放定址法的线性探测 */
		if (H.elem[*addr] == NULLKEY || *addr == Hash(key)) /* 如果循环回到原点 */
			return UNSUCCESS;	/* 则说明关键字不存在 */
	}
	return SUCCESS;
}

int main()
{
	int arr[HASHSIZE]={12,67,56,16,25,37,22,29,15,47,48,34};
	int i,p,key,result;
	HashTable H;

	key=39;

	InitHashTable(&H);
	for(i=0;i<m;i++)
		 InsertHash(&H,arr[i]);
	
	result=SearchHash(H,key,&p);
	if (result)
		printf("查找 %d 的地址为:%d \n",key,p);
	else
		printf("查找 %d 失败。\n",key);

	for(i=0;i<m;i++)
	{
		key=arr[i];
		SearchHash(H,key,&p);
		printf("查找 %d 的地址为:%d \n",key,p);
	}

	return 0;
}

猜你喜欢

转载自blog.csdn.net/m0_38099899/article/details/79398101