Java核心技术36讲之(十九)Java并发包

Java 并发包提供了哪些并发工具类?

我们通常所说的并发包也就是 java.util.concurrent 及其子包,集中了 Java 并发的各种基础工具类,具体主要包括几个方面:

  • 提供了比 synchronized 更加高级的各种同步结构,包括CountDownLatch、CyclicBarrier、Sempahore 等,可以实现更加丰富的多线程操作,比如利用Semaphore 作为资源控制器,限制同时进行工作的线程数量。
  • 各种线程安全的容器,比如最常见的 ConcurrentHashMap、有序的ConcunrrentSkipListMap,或者通过类似快照机制,实现线程安全的动态数组 CopyOnWriteArrayList 等。
  • 各种并发队列实现,如各种 BlockedQueue 实现,比较典型的 ArrayBlockingQueue、 SynchorousQueue 或针对特定场景的 PriorityBlockingQueue 等。
  • 强大的 Executor 框架,可以创建各种不同类型的线程池,调度任务运行等,绝大部分情况下,不再需要自己从头实现线程池和任务调度器。

多线程编程的目的

  • 利用多线程提高程序的扩展能力,以达到业务对吞吐量的要求。
  • 协调线程间调度、交互,以完成业务逻辑。
  • 线程间传递数据和状态,这同样是实现业务逻辑的需要。

并发包提供的丰富同步结构

  • CountDownLatch,允许一个或多个线程等待某些操作完成。
  • CyclicBarrier,一种辅助性的同步结构,允许多个线程等待到达某个屏障。
  • Semaphore,Java 版本的信号量实现。

Java 提供了经典信号量(Semaphore))的实现,它通过控制一定数量的允许(permit)的方式,来达到限制通用资源访问的目的。你可以想象一下这个场景,在车站、机场等出租车时,当很多空出租车就位时,为防止过度拥挤,调度员指挥排队等待坐车的队伍一次进来 5 个人上车,等这 5 个人坐车出发,再放进去下一批,这和 Semaphore 的工作原理有些类似。

Semaphore 来模拟实现调度过程:

import java.util.concurrent.Semaphore;
public class UsualSemaphoreSample {
    public static void main(String[] args) throws InterruptedException {
        System.out.println("Action...GO!");
        Semaphore semaphore = new Semaphore(5);
        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(new SemaphoreWorker(semaphore));
            t.start();
        }
    }
}
class SemaphoreWorker implements Runnable {
    private String name;
    private Semaphore semaphore;
    public SemaphoreWorker(Semaphore semaphore) {
        this.semaphore = semaphore;
    }
    @Override
    public void run() {
        try {
            log("is waiting for a permit!");
           semaphore.acquire();
            log("acquired a permit!");
            log("executed!");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            log("released a permit!");
            semaphore.release();
        }
    }
    private void log(String msg){
        if (name == null) {
            name = Thread.currentThread().getName();
        }
        System.out.println(name + " " + msg);
    }
}

这段代码是比较典型的 Semaphore 示例,其逻辑是,线程试图获得工作允许,得到许可则进行任务,然后释放许可,这时等待许可的其他线程,就可获得许可进入工作状态,直到全部处理结束。编译运行,我们就能看到 Semaphore 的允许机制对工作线程的限制。
但是,从具体节奏来看,其实并不符合我们前面场景的需求,因为本例中 Semaphore 的用法实际是保证,一直有 5 个人可以试图乘车,如果有 1 个人出发了,立即就有排队的人获得许可,而这并不完全符合我们前面的要求。
非典型的 Semaphore 用法

import java.util.concurrent.Semaphore;
public class AbnormalSemaphoreSample {
    public static void main(String[] args) throws InterruptedException {
        Semaphore semaphore = new Semaphore(0);
        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(new MyWorker(semaphore));
            t.start();
        }
        System.out.println("Action...GO!");
        semaphore.release(5);
        System.out.println("Wait for permits off");
        while (semaphore.availablePermits()!=0) {
            Thread.sleep(100L);
        }
        System.out.println("Action...GO again!");
        semaphore.release(5);
    }
}
class MyWorker implements Runnable {
    private Semaphore semaphore;
    public MyWorker(Semaphore semaphore) {
        this.semaphore = semaphore;
    }
    @Override
    public void run() {
        try {
            semaphore.acquire();
            System.out.println("Executed!");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

注意,上面的代码,更侧重的是演示 Semaphore 的功能以及局限性,其实有很多线程编程中的反实践,比如使用了 sleep 来协调任务执行,而且使用轮询调用 availalePermits 来检测信号量获取情况,这都是很低效并且脆弱的,通常只是用在测试或者诊断场景。
总的来说,我们可以看出 Semaphore 就是个计数器,其基本逻辑基于 acquire/release,并没有太复杂的同步逻辑。
如果 Semaphore 的数值被初始化为 1,那么一个线程就可以通过 acquire 进入互斥状态,本质上和互斥锁是非常相似的。但是区别也非常明显,比如互斥锁是有持有者的,而对于 Semaphore 这种计数器结构,虽然有类似功能,但其实不存在真正意义的持有者,除非我们进行扩展包装。

CountDownLatch 和 CyclicBarrier区别

  • CountDownLatch 是不可以重置的,所以无法重用;而 CyclicBarrier 则没有这种限制,可以重用。
  • CountDownLatch 的基本操作组合是 countDown/await。调用 await 的线程阻塞等待 countDown足够的次数,不管你是在一个线程还是多个线程里 countDown,只要次数足够即可。所以就像 Brain Goetz说过的,CountDownLatch 操作的是事件。
  • CyclicBarrier 的基本操作组合,则就是 await,当所有的伙伴(parties)都调用了await,才会继续进行任务,并自动进行重置。注意,正常情况下,CyclicBarrier 的重置都是自动发生的,如果我们调用 reset方法,但还有线程在等待,就会导致等待线程被打扰,抛出 BrokenBarrierException 异常。CyclicBarrier侧重点是线程,而不是调用事件,它的典型应用场景是用来等待并发线程结束。

如果用 CountDownLatch 去实现上面的排队场景,该怎么做呢?假设有 10 个人排队,我们将其分成 5 个人一批,通过 CountDownLatch 来协调批次,你可以试试下面的示例代码。

import java.util.concurrent.CountDownLatch;
public class LatchSample {
    public static void main(String[] args) throws InterruptedException {
        CountDownLatch latch = new CountDownLatch(6);
           for (int i = 0; i < 5; i++) {
                Thread t = new Thread(new FirstBatchWorker(latch));
                t.start();
        }
        for (int i = 0; i < 5; i++) {
                Thread t = new Thread(new SecondBatchWorker(latch));
                t.start();
        }
           // 注意这里也是演示目的的逻辑,并不是推荐的协调方式
        while ( latch.getCount() != 1 ){
                Thread.sleep(100L);
        }
        System.out.println("Wait for first batch finish");
        latch.countDown();
    }
}
class FirstBatchWorker implements Runnable {
    private CountDownLatch latch;
    public FirstBatchWorker(CountDownLatch latch) {
        this.latch = latch;
    }
    @Override
    public void run() {
            System.out.println("First batch executed!");
            latch.countDown();
    }
}
class SecondBatchWorker implements Runnable {
    private CountDownLatch latch;
    public SecondBatchWorker(CountDownLatch latch) {
        this.latch = latch;
    }
    @Override
    public void run() {
        try {
            latch.await();
            System.out.println("Second batch executed!");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

CountDownLatch 的调度方式相对简单,后一批次的线程进行 await,等待前一批 countDown 足够多次。这个例子也从侧面体现出了它的局限性,虽然它也能够支持 10 个人排队的情况,但是因为不能重用,如果要支持更多人排队,就不能依赖一个 CountDownLatch 进行了。
在实际应用中的条件依赖,往往没有这么别扭,CountDownLatch 用于线程间等待操作结束是非常简单普遍的用法。通过 countDown/await 组合进行通信是很高效的,通常不建议使用例子里那个循环等待方式。

如果用 CyclicBarrier 来表达这个场景呢?我们知道 CyclicBarrier 其实反映的是线程并行运行时的协调,在下面的示例里,从逻辑上,5 个工作线程其实更像是代表了 5 个可以就绪的空车,而不再是 5 个乘客,对比前面 CountDownLatch 的例子更有助于我们区别它们的抽象模型,请看下面的示例代码:

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierSample {
    public static void main(String[] args) throws InterruptedException {
        CyclicBarrier barrier = new CyclicBarrier(5, new Runnable() {
            @Override
            public void run() {
                System.out.println("Action...GO again!");
            }
        });
        for (int i = 0; i < 5; i++) {
            Thread t = new Thread(new CyclicWorker(barrier));
            t.start();
        }
    }
    static class CyclicWorker implements Runnable {
        private CyclicBarrier barrier;
        public CyclicWorker(CyclicBarrier barrier) {
            this.barrier = barrier;
        }
        @Override
        public void run() {
            try {
                for (int i=0; i<3 ; i++){
                    System.out.println("Executed!");
                    barrier.await();
                }
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

为了让输出更能表达运行时序,我使用了 CyclicBarrier 特有的 barrierAction,当屏障被触发时,Java 会自动调度该动作。因为 CyclicBarrier 会自动进行重置,所以这个逻辑其实可以非常自然的支持更多排队人数。

CopyOnWrite

  • 它的原理是,任何修改操作,如add、set、remove,都会拷贝原数组,修改后替换原来的数组,通过这种防御性的方式,实现另类的线程安全。
  • 所以这种数据结构,相对比较适合读多写少的操作,不然修改的开销还是非常明显的。
  • 请看下面的代码片段,我进行注释的地方,可以清晰地理解其逻辑。
public boolean add(E e) {
    synchronized (lock) {
        Object[] elements = getArray();
        int len = elements.length;
           // 拷贝
        Object[] newElements = Arrays.copyOf(elements, len + 1);
        newElements[len] = e;
           // 替换
        setArray(newElements);
        return true;
            }
}
final void setArray(Object[] a) {
    array = a;
}

猜你喜欢

转载自blog.csdn.net/lwl2014100338/article/details/80750682