keras 中的lstm

import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
def process_data():
    # define the raw dataset
    alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    # create mapping of characters to integers (0-25) and the reverse
    char_to_int = dict((c, i) for i, c in enumerate(alphabet))
    int_to_char = dict((i, c) for i, c in enumerate(alphabet))
    seq_length =3
    sample_length=len(alphabet)
    dataX = []
    dataY = []
    for i in range(0, len(alphabet) - seq_length, 1):
        seq_in = alphabet[i:i + seq_length]
        # seq_in = alphabet[i]
        seq_out = alphabet[i + seq_length]
        dataX.append([char_to_int[char] for char in seq_in])
        dataY.append(char_to_int[seq_out])
        # print (seq_in, '->', seq_out)
    # print(dataX)
    # reshape X to be [samples, time steps, features]

    a=len(dataX)
    b=a/2
    # print(a/2)
    # X = numpy.reshape(dataX, (len(dataX), 1,seq_length))#timesteps这个参数,我们设置了1
    X = numpy.reshape(dataX, (len(dataX),seq_length, 1))#timesteps这个参数,此处设置了3

    # X = numpy.reshape(dataX, (12, 1,seq_length ))#lstm要求三维的输入,所以需要将原始数据转成3维的,这里将原始数据做成了24个矩阵,每个矩阵是1行1列的,
    #当然可以做成12个矩阵,每个矩阵是1行2列的
    # normalize,归一化
    X = X / float(len(alphabet))
    #可以把这个问题当作是一个序列的分类问题,26个不同的字母代表了不同的类别,我们用keras的内置的 to_categorical()函数把datay进行 one——hot编码,作为输出层的结果。
    # one hot encode the output variable
    y = np_utils.to_categorical(dataY)
    # print(X.shape[1], X.shape[2])
    return X,y,int_to_char,dataX,sample_length
def buile_model():
    # create and fit the model
    model = Sequential()
    model.add(LSTM(128, input_shape=(X.shape[1], X.shape[2])))#确定输入数据是多少行,多少列的,在单层的lstm下,若神经元个数为32训练313个epoch后,准确度达到100%
    #若神经元个数达到128,可以在训练到175个epoch后,准确度达到100%
    # model.add(LSTM(32))
    model.add(Dense(y.shape[1], activation='softmax'))#输出应该是多少类,是由输出的字母类别数目决定的
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
def train_model(model,X, y):
    for i in range(0,500):
        model.fit(X, y, epochs=1, batch_size=1, verbose=2)#模型进行训练
        if i% 10 == 0:
            model.save_weights("./save/abcd.h5")#每10个迭代保存依次模型
    # summarize performance of the model
        scores = model.evaluate(X, y, verbose=0)
        print("Model Accuracy: %.2f%%" % (scores[1]*100))
        print('here',i)
def predict(dataX,model,sample_length):
# demonstrate some model predictions
    model.load_weights("./save/abcd.h5")#预测时先载入训练好的权重
    for pattern in dataX:
        # print(pattern)
        # x = numpy.reshape(pattern, (1, 1, len(pattern)))#这个是在time_step=1时用
        x = numpy.reshape(pattern, (1, len(pattern),1 ))#这个是在time_step=3时用
        x = x / float(sample_length)
        prediction = model.predict(x, verbose=0)
        index = numpy.argmax(prediction)
        result = int_to_char[index]
        seq_in = [int_to_char[value] for value in pattern]
        print (seq_in, "->", result)
if __name__ == '__main__':
    X, y,int_to_char,dataX,sample_length=process_data()
    model=buile_model()
    train_model(model,X, y)
    # predict(dataX,model,sample_length)


'''
authour:wanghua
date:2018/3/16
探讨下输入,预测之间维度的关系
如何增加多层的lstm

'''


import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
# fix random seed for reproducibility
numpy.random.seed(7)
def process_data():
    # define the raw dataset
    alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    # create mapping of characters to integers (0-25) and the reverse
    char_to_int = dict((c, i) for i, c in enumerate(alphabet))
    int_to_char = dict((i, c) for i, c in enumerate(alphabet))
    seq_length =3
    sample_length=len(alphabet)
    dataX = []
    dataY = []
    for i in range(0, len(alphabet) - seq_length, 1):
        seq_in = alphabet[i:i + seq_length]
        # seq_in = alphabet[i]
        seq_out = alphabet[i + seq_length]
        dataX.append([char_to_int[char] for char in seq_in])
        dataY.append(char_to_int[seq_out])
        # print (seq_in, '->', seq_out)
    # print(dataX)
    # reshape X to be [samples, time steps, features]

    a=len(dataX)
    b=a/2
    # print(a/2)
    # X = numpy.reshape(dataX, (len(dataX), 1,seq_length))#timesteps这个参数,我们设置了1
    X = numpy.reshape(dataX, (len(dataX),seq_length, 1))#timesteps这个参数,此处设置了3

    # X = numpy.reshape(dataX, (12, 1,seq_length ))#lstm要求三维的输入,所以需要将原始数据转成3维的,这里将原始数据做成了24个矩阵,每个矩阵是1行1列的,
    #当然可以做成12个矩阵,每个矩阵是1行2列的
    # normalize,归一化
    X = X / float(len(alphabet))
    #可以把这个问题当作是一个序列的分类问题,26个不同的字母代表了不同的类别,我们用keras的内置的 to_categorical()函数把datay进行 one——hot编码,作为输出层的结果。
    # one hot encode the output variable
    y = np_utils.to_categorical(dataY)
    # print(X.shape[1], X.shape[2])
    return X,y,int_to_char,dataX,sample_length
def buile_model():
    # create and fit the model
    model = Sequential()
    model.add(LSTM(128,dropout_W=0.2, dropout_U=0.2, input_shape=(X.shape[1], X.shape[2]),return_sequences=True))#确定输入数据是多少行,多少列的,在单层的lstm下,若神经元个数为32训练313个epoch后,准确度达到100%
    #此处通过设置return_sequences=True,可以添加多层的lstm
    model.add(LSTM(256, return_sequences=False))#最后一层的lstm,return_sequences=False
    #若神经元个数达到128,可以在训练到175个epoch后,准确度达到100%
    # model.add(LSTM(32))
    model.add(Dense(y.shape[1], activation='softmax'))#输出应该是多少类,是由输出的字母类别数目决定的
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
def train_model(model,X, y):
    for i in range(0,500):
        model.fit(X, y, epochs=1, batch_size=1, verbose=2)#模型进行训练
        if i% 10 == 0:
            model.save_weights("./save/abcd.h5")#每10个迭代保存依次模型
    # summarize performance of the model
        scores = model.evaluate(X, y, verbose=0)
        print("Model Accuracy: %.2f%%" % (scores[1]*100))
        print('here',i)
def predict(dataX,model,sample_length):
# demonstrate some model predictions
    model.load_weights("./save/abcd.h5")#预测时先载入训练好的权重
    for pattern in dataX:
        # print(pattern)
        # x = numpy.reshape(pattern, (1, 1, len(pattern)))#这个是在time_step=1时用
        x = numpy.reshape(pattern, (1, len(pattern),1 ))#这个是在time_step=3时用
        x = x / float(sample_length)
        prediction = model.predict(x, verbose=0)
        index = numpy.argmax(prediction)
        result = int_to_char[index]
        seq_in = [int_to_char[value] for value in pattern]
        print (seq_in, "->", result)
if __name__ == '__main__':
    X, y,int_to_char,dataX,sample_length=process_data()
    model=buile_model()
    train_model(model,X, y)
    # predict(dataX,model,sample_length)

猜你喜欢

转载自blog.csdn.net/weixin_38145317/article/details/79584788