数据在计算机中的存储(保姆级讲解)

目录

一.数据类型介绍(重点)

二.类型的基本归类

整型家族:

 浮点数家族:

 构造类型:

 指针类型:

 空类型:

三.整型数据在内存中的存储:

 1.  原码   反码   补码

 2.大小端介绍:

(1)大小端的介绍:

(2)大小端出现的原因: 

四.浮点型数据在计算机中的存储: 

 浮点数存储的规则:

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)

E不全为0或不全为1

E全为0

E全为1


一.数据类型介绍(重点

char                               //字符数据类型

short                              //短整型数据类型

int                                  //整型数据类型

long                               //长整型数据类型

long long                       //更长的整型

float                               //单精度浮点数

double                           //双精度浮点数 

二.类型的基本归类

整型家族:

char
                unsigned char
                signed char
short
                unsigned short [int]
                signed short [int]
int
                unsigned int
                signed int
long
                unsigned long [int]
                signed long [int]

 浮点数家族:

float

double

 构造类型:

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

 指针类型:

int * pi;
char * pc;
float * pf;
void * pv;

 空类型:

 void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。

三.整型数据在内存中的存储:

 1.  原码   反码   补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位

正数的原、反、补码都相同。
负整数的三种表示方法各不相同。

 原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。 

补码
反码+1就得到补码。 

对于整形来说:数据存放内存中其实存放的是补码。
  计算机存放补码的原因?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统
一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程
是相同的,不需要额外的硬件电路。

 

 

 2.大小端介绍:

(1)大小端的介绍:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中

(2)大小端出现的原因: 

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short
型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32
位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因
此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高
地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式
还是小端模式。 

四.浮点型数据在计算机中的存储: 

浮点数存储的例子:

int main()
{
    int n = 9;
    float *pFloat = (float *)&n;
    printf("n的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    *pFloat = 9.0;
    printf("num的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    return 0;
}

 对于这段代码执行出来的效果是:

 浮点数存储的规则:

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。

 

 

 IEEE 754对有效数字M和指数E,还有一些特别规定。

 前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的
xxxxxx部分。比如保存1.01的时
候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位
浮点数为例,留给M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)

这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们
知道,科学计数法中的E是可以出
现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数
是127;对于11位的E,这个中间
数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即
10001001。

E不全为0或不全为1

 这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

猜你喜欢

转载自blog.csdn.net/2201_75998194/article/details/130984261
今日推荐