Yolov5 网络构建代码(1)- Detect

 在该目录下存放着yolo.py文件,里面的代码是关于网络构建相关的。

里面其实就写了两个class,一个是Detect,一个是Model

 Detect

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

先看__init__初始化方法:一开始是接受的了4个数据 nc=80, anchors=(), ch=(), inplace=True

nc:分类总数  默认是80个类别是coco数据集的。

anchors:每一个feature map上先验框大小。    每个维度存放了3个框的大小                                  里面数据存储方式是[[10,13,16,30,33,23],[30,61,62,45,59,119],[116,90,156,198,373,326]]

ch:3个feature map的通道数      [128,256,512]

inplace: 一般都是True 默认不使用AWS Inferentia加速

self.nc = nc  # 重写了分类数
self.no = nc + 5  # 每个先验框输出的结果,前面的nc是目标类得分 + 先验框的数据[x, y, h, w, p(目标检测得分)]
self.nl = len(anchors)  # 检测维度,一般是3,
self.na = len(anchors[0]) // 2  # 先验框的个数,一般也是3
self.grid = [torch.zeros(1)] * self.nl  # 全是1的格子
self.anchor_grid = [torch.zeros(1)] * self.nl  # 先验框的格子
        
# 模型中需要保存的参数一般有两种:一种是反向传播需要被优化器更新的,称为parameter; 
# 一种不要被优化器更新称为buffer
# 不需要被更新的参数,我们需要创建一个tensor,然后通过register_buffer去注册
# 可以通过model.buffers() 返回,注册后的参数也会被自动保存到OrderDict中去。
# 需要注意的是buffer的参数更新是在forward中,而optim.step只能更新nn.parameter类型的参数
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv   1*1的卷积
        
# 一般都是True 默认不使用AWS Inferentia加速
self.inplace = inplace  # use in-place ops (e.g. slice assignment)

接下来就是forward方法

def forward(self, x):
    # 先将z赋值成一个空列表
    z = []  # inference output
    
    # 然后对每一个检测维度进行迭代
    for i in range(self.nl):
        
        # 先进行一个1*1的卷积操作,统一维度,便于拼接
        # [bs, 128/256/512, 80, 80] - [bs, 75, 80, 80]
        x[i] = self.m[i](x[i])  # conv  
        
        
        # 取出x的维度
        bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
        # 调整顺序
        x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
        
      # 判断是否是训练模式,为训练模式则不工作
        """
        因为推理返回的不是归一化后的网格偏移量 需要再加上网格的位置 得到最终的推理坐标 再送入nms
        所以这里构建网格就是为了纪律每个grid的网格坐标 方面后面使用
        """
         # 如果当前模式为预测推理模式
        if not self.training:  # inference 推理
            if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

            y = x[i].sigmoid()

            """
            默认执行 不使用AWS Inferentia
            这里的公式和yolov3、v4中使用的不一样 是yolov5作者自己用的 效果更好
            """
            if self.inplace:
               y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
               y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
            else: 
               xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
               wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
               y = torch.cat((xy, wh, y[..., 4:]), -1)
               z.append(y.view(bs, -1, self.no))
    
    # 如果是训练模式,返回x就行。如果不是则返回拼接结果  预测框坐标,object,class
    return x if self.training else (torch.cat(z, 1), x)
 
 

猜你喜欢

转载自blog.csdn.net/qq_35326529/article/details/128276202