RT-Thread qemu mps2-an385 bsp 移植制作 :系统运行篇

前言

  • 前面已经让 RT-Thread 进入了 entry 入口函数,并且 调整 链接脚本,自动初始化与 MSH shell 的符号已经预留, 进入了 RT-Thread 的初始化流程

  • 接下来:从 内存管理、系统tick 定时器、适配串口 uart 驱动三个模块入手,让RT-Thread 真正运行起来

系统tick定时器

  • 可以称之为 操作系统的心跳,一般是个周期性的定时器,比如 1ms 为周期,周期性的执行。

  • 通过验证,mps2-an385 支持 systick 定时器,简单配置后,就可以实现 系统 tick 定时器功能

  • 修改完善 drv_common.c

#include <rtthread.h>
#include <board.h>
#include "CMSDK_CM3.h"
#include "system_CMSDK_CM3.h"

static uint32_t _systick_ms = 1;

/**
 * This is the timer interrupt service routine.
 *
 */
void SysTick_Handler(void)
{
    
    
    /* enter interrupt */
    rt_interrupt_enter();

    rt_tick_increase();

    /* leave interrupt */
    rt_interrupt_leave();
}

/* SysTick configuration */
void rt_hw_systick_init(void)
{
    
    
    SysTick_Config(SystemCoreClock / RT_TICK_PER_SECOND);

    NVIC_SetPriority(SysTick_IRQn, 0xFF);

    _systick_ms = 1000u / RT_TICK_PER_SECOND;
    if(_systick_ms == 0)
        _systick_ms = 1;
}
  • rt_hw_systick_init 当前被 board.c 中的 rt_hw_board_init 调用,而 rt_hw_board_init 又被 RT-Thread rtthread_startup 调用, rtthread_startup 被 RT-Thread 入口函数 entry 调用,这个 entry 又被 启动文件 Reset_Handler 调用,Reset_Handler 是 MCU 上电执行的函数。

  • 初始化 rt_hw_systick_init 后,VS Code gdb 调试,发现可以周期性进入 SysTick_Handler,也就是 systick 定时器的中断处理函数,在这个函数中,执行 rt_tick_increase,基于时间片的系统调度、系统定时与延时等,都依赖 系统 tick 定时器,也就是移植 RT-Thread,必须有周期性 tick 定时器

在这里插入图片描述

系统内存管理

  • mps2-an385 的 RAM 4MB,当前内存配置在 board.h 中实现
#ifndef __BOARD_H__
#define __BOARD_H__

#include <rtconfig.h>

#if defined(__CC_ARM)
extern int Image$$RW_IRAM1$$ZI$$Limit;
#define HEAP_BEGIN      ((void*)&Image$$RW_IRAM1$$ZI$$Limit)
#elif defined(__GNUC__)
extern int __bss_end__;
#define HEAP_BEGIN      ((void*)&__bss_end__)
#endif

#define HEAP_END        (void*)(0x20000000 + 4 * 1024 * 1024)

void rt_hw_board_init(void);
void rt_hw_systick_init(void);

#endif
  • mps2-an385 qemu 不需要配置系统的时钟,所以 board.c 主要用于实现 rt_hw_board_init,初始化内存、串口、系统 tick 定时器,并设置 MSH shell 串口终端
#include <rthw.h>
#include <rtthread.h>
#include "board.h"
#include "drv_uart.h"

void idle_wfi(void)
{
    
    
    asm volatile ("wfi");
}

/**
 * This function will initialize board
 */
void rt_hw_board_init(void)
{
    
    
    /* initialize system heap */
    rt_system_heap_init(HEAP_BEGIN, HEAP_END);

    /* initialize hardware interrupt */

    rt_hw_systick_init();
    rt_hw_uart_init();

    rt_components_board_init();
    rt_console_set_device(RT_CONSOLE_DEVICE_NAME);

    rt_thread_idle_sethook(idle_wfi);
}

串口驱动适配

  • RT-Thread 具有 MSH shell 组件,这个组件在程序调试中非常的有用,合理的利用 shell,可以实现一些复杂的操作

  • mps2-an385 的串口配置并不复杂,不像STM32 那样有各种配置,所以当前简单的适配了一下,实现了串口中断接收、串口发送,即可让 MSH shell 串口正常工作

  • 当前初步验证, mps2-an385 uart0 可以正常用于 MSH shell

  • drv_uart.c 适配如下:

#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"

#include "CMSDK_CM3.h"

enum
{
    
    
#ifdef BSP_USING_UART0
    UART0_INDEX,
#endif
#ifdef BSP_USING_UART1
    UART1_INDEX,
#endif
};

/* qemu uart dirver class */
struct uart_instance
{
    
    
    const char *name;
    CMSDK_UART_TypeDef *handle;
    IRQn_Type irq_num;
    int uart_index;
    struct rt_serial_device serial;
};

#if defined(BSP_USING_UART0)
#ifndef UART0_CONFIG
#define UART0_CONFIG                                                \
    {
      
                                                                     \
        .name = "uart0",                                            \
        .handle = CMSDK_UART0,                                      \
        .irq_num = UART0RX_IRQn,                                    \
        .uart_index = UART0_INDEX,                                  \
    }
#endif /* UART0_CONFIG */
#endif /* BSP_USING_UART0 */

#if defined(BSP_USING_UART1)
#ifndef UART1_CONFIG
#define UART1_CONFIG                                                \
    {
      
                                                                     \
        .name = "uart1",                                            \
        .handle = CMSDK_UART1,                                      \
        .irq_num = UART1RX_IRQn,                                    \
        .uart_index = UART1_INDEX,                                  \
    }
#endif /* UART1_CONFIG */
#endif /* BSP_USING_UART1 */

static struct uart_instance uart_obj[] =
{
    
    
#ifdef BSP_USING_UART0
    UART0_CONFIG,
#endif
#ifdef BSP_USING_UART1
    UART1_CONFIG,
#endif
};

static void uart_isr(struct rt_serial_device *serial)
{
    
    
    /* UART in mode Receiver */
    rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}

void UART0RX_Handler(void)
{
    
    
#ifdef BSP_USING_UART0
    uint32_t irq_status = 0x00;
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[UART0_INDEX].serial));

    irq_status = uart_obj[UART0_INDEX].handle->INTCLEAR;
    uart_obj[UART0_INDEX].handle->INTCLEAR = irq_status;
    /* leave interrupt */
    rt_interrupt_leave();
#endif
}

void UART1RX_Handler(void)
{
    
    
#ifdef BSP_USING_UART1
    uint32_t irq_status = 0x00;
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[UART1_INDEX].serial));
    irq_status = uart_obj[UART1_INDEX].handle->INTCLEAR;
    uart_obj[UART1_INDEX].handle->INTCLEAR = irq_status;

    /* leave interrupt */
    rt_interrupt_leave();
#endif
}

static rt_err_t uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
    
    
    struct uart_instance *instance;

    RT_ASSERT(serial != RT_NULL);
    instance = (struct uart_instance *)serial->parent.user_data;

    uart_obj[instance->uart_index].handle->BAUDDIV = 16;
    uart_obj[instance->uart_index].handle->CTRL = CMSDK_UART_CTRL_RXIRQEN_Msk | CMSDK_UART_CTRL_RXEN_Msk | CMSDK_UART_CTRL_TXEN_Msk;
    NVIC_EnableIRQ(uart_obj[instance->uart_index].irq_num);
    uart_obj[instance->uart_index].handle->STATE = 0;

    return RT_EOK;
}

static rt_err_t uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
    
    
    struct uart_instance *instance;

    RT_ASSERT(serial != RT_NULL);
    instance = (struct uart_instance *)serial->parent.user_data;

    switch (cmd)
    {
    
    
    case RT_DEVICE_CTRL_CLR_INT:
        /* disable rx irq */
        instance->handle->CTRL &= ~CMSDK_UART_CTRL_RXIRQEN_Msk;
        break;

    case RT_DEVICE_CTRL_SET_INT:
        /* enable rx irq */
        instance->handle->CTRL |= CMSDK_UART_CTRL_RXIRQEN_Msk;
        break;
    }

    return RT_EOK;
}

static int uart_putc(struct rt_serial_device *serial, char c)
{
    
    
    struct uart_instance *instance;

    RT_ASSERT(serial != RT_NULL);
    instance = (struct uart_instance *)serial->parent.user_data;

    instance->handle->DATA = c;

    return 1;
}

static int uart_getc(struct rt_serial_device *serial)
{
    
    
    int ch;
    uint32_t state = 0;
    struct uart_instance *instance;

    RT_ASSERT(serial != RT_NULL);
    instance = (struct uart_instance *)serial->parent.user_data;

    ch = -1;
    if (!instance)
        return ch;

    state = instance->handle->STATE;
    if (state)
    {
    
    
        ch = instance->handle->DATA & 0xff;
        instance->handle->STATE = 0;
    }

    return ch;
}

static const struct rt_uart_ops _uart_ops =
{
    
    
    uart_configure,
    uart_control,
    uart_putc,
    uart_getc,
};

int rt_hw_uart_init(void)
{
    
    
    struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
    rt_err_t result = 0;

    for (rt_size_t i = 0; i < sizeof(uart_obj) / sizeof(struct uart_instance); i++)
    {
    
    
        /* init UART object */
        uart_obj[i].serial.ops = &_uart_ops;
        uart_obj[i].serial.config = config;

        /* register UART device */
        result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].name,
                                       RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
                                       &uart_obj[i]);
        RT_ASSERT(result == RT_EOK);
    }

    return result;
}
  • 串口适配的主要流程: 定义串口设备结构,实现 uart_putc, uart_getc, uart_configure,通过 rt_hw_serial_register 注册串口设备,编写 串口中断的处理函数

系统运行

  • 以上适配了 内存、系统 tick 定时器与 MSH shell 串口后,通过 scons --menuconfig 配置 MSH shell 串口为 uart0,RT-Thread 运行起来了

在这里插入图片描述

  • ./qemu.sh 运行信息

在这里插入图片描述

  • 以上,说明RT-Thread qemu mps2-an385 bsp 制作初步完成,当前初步验证,无法支持文件系统,并且其他的外设欠缺资料,因为移植宣告完成。

  • 可以通过 VS Code gdb 调试,熟悉 RT-Thread 系统调用、内存分配、测试验证各个 RT-Thread 功能模块

小结

  • 本篇通过 bsp 适配 内存管理、串口驱动、系统 tick 定时器,让 RT-Thread 跑起来,qemu mps2-an385 bsp 在 RT-Thread 上移植适配完成。

猜你喜欢

转载自blog.csdn.net/tcjy1000/article/details/131883641