ACM数论 裴蜀定理(贝祖定理)

一.内容定义

        「裴蜀定理」,又称贝祖定理(Bézout's lemma)。是一个关于最大公约数的定理。其内容定义为:对于不全为零的任意整数 a 和 b,记二者的最大公约数为 g 即 gcd(a,b) = g,则对于任意整数 x 和 y 都一定满足 ax+by 是 g 的倍数。特别地,一定存在整数 x 和 y 的解,使得 ax+by=gcd(a,b) 成立。它的一个重要推论为:a,b互质充分必要条件是存在整数x,y 使 ax+by=1; 或者说对于方程 ax+by=1 只有整数a和b互质时,方程才有整数解x,y。

        「裴蜀定理」也可以推广到多个整数的情况。对于不全为零的任意 n 个整数 a_1,a_2,a_3,...,a_n,记这 n 个数的最大公约数为 g = gcd(a_1,a_2,...,a_n) ,则对于任意 n 个整数 x_1,x_2,...,x_n 都满足 \sum_{1}^{n} a_i*x_i 是 g 的倍数。特别的,一定存在一个整数序列的解 x_1,x_2,...,x_n 使得 x_1*a_1+x_2*a_2+...+x_n*a_n = g 成立。 它的一个重要的推论为:正整数 ​a_1 到 a_n​ 的最大公约数是 1 充分必要条件是存在 n 个整数 x_1 到 x_n 满足 x_1*a_1+x_2*a_2+...+x_n*a_n = 1

二.证明与应用

1.证明

        裴蜀定理的证明在本文就不再赘述,该定理是一个很简单但是又非常重要的基本定理。这里给出两个比较官方的证明,请参考如下:

2.应用

        裴蜀定理作为一个非常重要的基本定理,一方面可以在一些算法题目中作为关键的解题思路出现;另一方面,该定理也是一些算法和证明的推导基础,比如 扩展欧几里得算法、线性同余方程等。可以参考我之前的文章会更加清晰:

三.例题

1.「检查好数组」LeetCode 1250

        给你一个正整数数组 nums,你需要从中任选一些子集,然后将子集中每一个数乘以一个 任意整数,并求出他们的和。假如该和结果为 1,那么原数组就是一个「好数组」,则返回 True;否则请返回 False。

        原题要求可以转换为求在数组中是否存在 x_1*nums_1 + x_2*nums_2 +... + x_k*nums_k = 1 ,根据裴蜀定理可知,该问题即为求解数组中是否存在任意一组互质的数。

         正面去思考的话问题比较复杂,我们需要考虑是否存在两两互质、三个互质 ...,时间复杂度较高。但是从反面去思考的话问题就简单很多:一个数组要么是「好数组」,要么就是「非好数组」;如果整个数组是「非好数组」,就意味着数组中不存在任意一组互质的数(任意两两都不互质),那么我们直接求整个数组 nums_1,nums_2,....,nums_n 的最大公约数即可。若全部数字的最大公约数等于 1 则原数组为「好数组」,否则不是。

#include <iostream>
#include <bits/stdc++.h>
using namespace std;

class Solution {
public:
    int gcd(int a,int b){
        return b==0?a:gcd(b,a%b);
    }

    bool isGoodArray(vector<int>& nums) {
        int len = nums.size();
        int x = nums[0];
        for(int i = 1;i<len;i++){
            if(x==1)break;
            x = gcd(x,nums[i]);
        }
        return x == 1;
    }
};

猜你喜欢

转载自blog.csdn.net/qq_40772692/article/details/129099553