YOLOv5区域检测计数+声音警报

本篇博文工程源码下载
链接1:https://github.com/up-up-up-up/yolov5-area-detection( 求 STAR )
链接2:https://pan.baidu.com/s/1WFVMow_-4M5Cc6P3nY63Sw?pwd=nucv

具体实现效果已在Bilibili发布,点击跳转

1. 相关配置

系统:win 10
YOLO版本:yolov5 6.1
电脑显卡:NVIDIA 2080Ti(CPU也可以跑,GPU只是起到加速推理效果)

2. 检测区域设置

设置区域范围由四个点围成,四个点的坐标分别为(wl1,hl1),(wl2,hl2),(wl3,hl3),(wl4,hl4)

 # 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)
hl1 = 270 / 1080  # 左上纵坐标/图片高度
wl1 = 480 / 1920  # 左上横坐标/图片宽度
hl2 = 270 / 1080  # 右上横坐标/图片宽度
wl2 = 700 / 1920  # 右上横坐标/图片宽度
hl3 = 810 / 1080  # 右下横坐标/图片宽度
wl3 = 700 / 1920  # 右下横坐标/图片宽度
hl4 = 810 / 1080  # 左下横坐标/图片宽度
wl4 = 480 / 1920  # 左下横坐标/图片宽度

请添加图片描述
具体把这部分代码加在了摄像头循环 for path, im, im0s, vid_cap, s in dataset 下:

for path, im, im0s, vid_cap, s in dataset:
    # 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)
    hl1 = 270 / 1080  # 左上纵坐标/图片高度
    wl1 = 480 / 1920  # 左上横坐标/图片宽度
    hl2 = 270 / 1080  # 右上横坐标/图片宽度
    wl2 = 700 / 1920  # 右上横坐标/图片宽度
    hl3 = 810 / 1080  # 右下横坐标/图片宽度
    wl3 = 700 / 1920  # 右下横坐标/图片宽度
    hl4 = 810 / 1080  # 左下横坐标/图片宽度
    wl4 = 480 / 1920  # 左下横坐标/图片宽度
    if webcam:
        for b in range(0, im.shape[0]):
            mask = np.zeros([im[b].shape[1], im[b].shape[2]], dtype=np.uint8)
            # mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
            pts = np.array([[int(im[b].shape[2] * wl1), int(im[b].shape[1] * hl1)],  # pts1
                            [int(im[b].shape[2] * wl2), int(im[b].shape[1] * hl2)],  # pts2
                            [int(im[b].shape[2] * wl3), int(im[b].shape[1] * hl3)],  # pts3
                            [int(im[b].shape[2] * wl4), int(im[b].shape[1] * hl4)]], np.int32) # 将四个点坐标存储为数组形式
            mask = cv2.fillPoly(mask, [pts], (255, 255, 255))  # 设置四个点围成的区域为分割区域
            imgc = im[b].transpose((1, 2, 0))
            imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)  #将分割区域添加进图像中
            # cv2.imshow('1',imgc)
            im[b] = imgc.transpose((2, 0, 1))

    else:
        mask = np.zeros([im.shape[1], im.shape[2]], dtype=np.uint8)
        # mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
        pts = np.array([[int(im.shape[2] * wl1), int(im.shape[1] * hl1)],  # pts1
                        [int(im.shape[2] * wl2), int(im.shape[1] * hl2)],  # pts2
                        [int(im.shape[2] * wl3), int(im.shape[1] * hl3)],  # pts3
                        [int(im.shape[2] * wl4), int(im.shape[1] * hl4)]], np.int32)
        mask = cv2.fillPoly(mask, [pts], (255, 255, 255))
        img = im.transpose((1, 2, 0))
        img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
        im = img.transpose((2, 0, 1))

3. 画检测区域线(不想显示也可以不画)

在 for i, det in enumerate(pred) 后添加以下代码:

for i, det in enumerate(pred):  # per image
    seen += 1
    if webcam:  # batch_size >= 1
        p, im0, frame = path[i], im0s[i].copy(), dataset.count
        s += f'{
      
      i}: '
        cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    1.0, (255, 255, 0), 2, cv2.LINE_AA) # 将 Detection_Region 这几个字写进图片

        pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                        [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                        [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                        [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4,将四个点坐标存储为数组
        # pts = pts.reshape((-1, 1, 2))
        zeros = np.zeros((im0.shape), dtype=np.uint8)
        mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))  # 将分割区域填充为浅蓝色
        im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)   # 在图上显示
        cv2.polylines(im0, [pts], True, (255, 255, 0), 3)   # 画边框线

    else:
        p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
        cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    1.0, (255, 255, 0), 2, cv2.LINE_AA)
        pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                        [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                        [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                        [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
        # pts = pts.reshape((-1, 1, 2))
        zeros = np.zeros((im0.shape), dtype=np.uint8)
        mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
        im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
        cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

4. 报警模块

当画框区域里检测到行人,进行报警

if save_img or save_crop or view_img:  # Add bbox to image
    if names[int(cls)] == "person":
        c = int(cls)  # integer class
        label = None if hide_labels else (names[c] if hide_conf else f'{
      
      names[c]} {
      
      conf:.2f}')
        annotator.box_label(xyxy, label, color=colors(c, True))
        pygame.mixer.init()   # 初始化
        pygame.mixer.music.load('out.wav')  # 加载音频out.wav文件
        pygame.mixer.music.set_volume(1)  # 设置音量
        pygame.mixer.music.play()   # 播放音效
        if save_crop:
            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{
      
      p.stem}.jpg', BGR=True)

5. 计数模块

首先定义一个全局变量person_count,具体写在if len(det)上方,需要注意这个全局变量需要与if view_img和if save_img同梯度,#111是我添加的代码

global person_count  # 111
person_count = 0   # 111
p = Path(p)  # to Path
save_path = str(save_dir / p.name)  # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{
      
      frame}')  # im.txt
s += '%gx%g ' % im.shape[2:]  # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
imc = im0.copy() if save_crop else im0  # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
    # Rescale boxes from img_size to im0 size
    det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
    # Print results
    for c in det[:, -1].unique():
        n = (det[:, -1] == c).sum()  # detections per class
        s += f"{
      
      n} {
      
      names[int(c)]}{
      
      's' * (n > 1)}, "  # add to string

然后在if save_img or save_crop or view_img添加计数

for *xyxy, conf, cls in reversed(det):
    if save_txt:  # Write to file
        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
        with open(txt_path + '.txt', 'a') as f:
            f.write(('%g ' * len(line)).rstrip() % line + '\n')

    if save_img or save_crop or view_img:  # Add bbox to image
        if names[int(cls)] == "person":
            c = int(cls)  # integer class
            label = None if hide_labels else (names[c] if hide_conf else f'{
      
      names[c]} {
      
      conf:.2f}')
            annotator.box_label(xyxy, label, color=colors(c, True))
            person_count += 1                            # 111
            pygame.mixer.init()
            pygame.mixer.music.load('out.wav')
            pygame.mixer.music.set_volume(1)
            pygame.mixer.music.play()

最后在view_img和save_img里画图显示

# Stream results
im0 = annotator.result()
if view_img:
    text = 'person_num:%d ' % (person_count)         # 111
    cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)      # 111
    cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("Webcam", 1280, 720)
    cv2.moveWindow("Webcam", 0, 100)
    cv2.imshow("Webcam", im0)
    cv2.waitKey(1)

# Save results (image with detections)
if save_img:
    text = 'person_num:%d ' % (person_count)       # 111
    cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)     # 111
    if dataset.mode == 'image':
        cv2.imwrite(save_path, im0)
    else:  # 'video' or 'stream'
        if vid_path[i] != save_path:  # new video
            vid_path[i] = save_path
            if isinstance(vid_writer[i], cv2.VideoWriter):
                vid_writer[i].release()  # release previous video writer
            if vid_cap:  # video
                fps = vid_cap.get(cv2.CAP_PROP_FPS)
                w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            else:  # stream
                fps, w, h = 30, im0.shape[1], im0.shape[0]
            save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
            vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
        vid_writer[i].write(im0)

6. 代码修改

6.1 主代码

import argparse
import os
import sys
from pathlib import Path

import cv2
import numpy as np
import pygame
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync


@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        ):

    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()


    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        # 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)
        hl1 = 270 / 1080  # 左上纵坐标/图片高度
        wl1 = 620 / 1920  # 左上横坐标/图片宽度
        hl2 = 270 / 1080  # 右上横坐标/图片宽度
        wl2 = 820 / 1920  # 右上横坐标/图片宽度
        hl3 = 630 / 1080  # 右下横坐标/图片宽度
        wl3 = 820 / 1920  # 右下横坐标/图片宽度
        hl4 = 630 / 1080  # 左下横坐标/图片宽度
        wl4 = 620 / 1920  # 左下横坐标/图片宽度
        if webcam:
            for b in range(0, im.shape[0]):
                mask = np.zeros([im[b].shape[1], im[b].shape[2]], dtype=np.uint8)
                # mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
                pts = np.array([[int(im[b].shape[2] * wl1), int(im[b].shape[1] * hl1)],  # pts1
                                [int(im[b].shape[2] * wl2), int(im[b].shape[1] * hl2)],  # pts2
                                [int(im[b].shape[2] * wl3), int(im[b].shape[1] * hl3)],  # pts3
                                [int(im[b].shape[2] * wl4), int(im[b].shape[1] * hl4)]], np.int32)
                mask = cv2.fillPoly(mask, [pts], (255, 255, 255))
                imgc = im[b].transpose((1, 2, 0))
                imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)
                # cv2.imshow('1',imgc)
                im[b] = imgc.transpose((2, 0, 1))

        else:
            mask = np.zeros([im.shape[1], im.shape[2]], dtype=np.uint8)
            # mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
            pts = np.array([[int(im.shape[2] * wl1), int(im.shape[1] * hl1)],  # pts1
                            [int(im.shape[2] * wl2), int(im.shape[1] * hl2)],  # pts2
                            [int(im.shape[2] * wl3), int(im.shape[1] * hl3)],  # pts3
                            [int(im.shape[2] * wl4), int(im.shape[1] * hl4)]], np.int32)
            mask = cv2.fillPoly(mask, [pts], (255, 255, 255))
            img = im.transpose((1, 2, 0))
            img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
            im = img.transpose((2, 0, 1))


        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{
      
      i}: '
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)

                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)
                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

            global person_count
            person_count = 0
            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{
      
      frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{
      
      n} {
      
      names[int(c)]}{
      
      's' * (n > 1)}, "  # add to string

                # Write results

                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        if names[int(cls)] == "person":
                            c = int(cls)  # integer class
                            label = None if hide_labels else (names[c] if hide_conf else f'{
      
      names[c]} {
      
      conf:.2f}')
                            annotator.box_label(xyxy, label, color=colors(c, True))
                            person_count += 1
                            pygame.mixer.init()
                            pygame.mixer.music.load('out.wav')
                            pygame.mixer.music.set_volume(1)
                            pygame.mixer.music.play()

                            if save_crop:
                                save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{
      
      p.stem}.jpg', BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                text = 'person_num:%d ' % (person_count)
                cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)

                cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
                cv2.resizeWindow("Webcam", 1280, 720)
                cv2.moveWindow("Webcam", 0, 100)
                cv2.imshow("Webcam", im0)
                cv2.waitKey(1)

            # Save results (image with detections)
            if save_img:
                text = 'person_num:%d ' % (person_count)
                cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)
                #text = 'tie_num:%d ' % (tie_count)
                #cv2.putText(im0, text, (180, 120), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 5)
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{
      
      s}Done. ({
      
      t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {
      
      (1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{
      
      len(list(save_dir.glob('labels/*.txt')))} labels saved to {
      
      save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {
      
      colorstr('bold', save_dir)}{
      
      s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
    parser.add_argument('--source', type=str, default=ROOT / './data/images/1.mp4', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true',default=True, help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

6.2 细节修改(可忽略)

到上述步骤就已经实现了单目测距过程,下边是一些小细节修改,可以不看
为了实时显示画面,对运行的py文件点击编辑配置,在形参那里输入–view-img --save-txt
在这里插入图片描述
但实时显示画面太大,我们对显示部分做了修改,这部分也可以不要,具体是把代码

if view_img:
      cv2.imshow(str(p), im0)
      cv2.waitKey(1)  # 1 millisecond

替换成

if view_img:
     cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
     cv2.resizeWindow("Webcam", 1280, 720)
     cv2.moveWindow("Webcam", 0, 100)
     cv2.imshow("Webcam", im0)
     cv2.waitKey(1)

6. 实验效果

图片效果
请添加图片描述

视频效果

猜你喜欢

转载自blog.csdn.net/qq_45077760/article/details/130812586