【目标检测论文解读复现NO.33】改进YOLOv5的新能源电池集流盘缺陷检测方法

前言

此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。

一、摘要

针对新能源汽车电池集流盘中因目标缺陷分布杂乱、尺寸跨度大和特征模糊而易出现误检、漏检的问题,提出一种基于多尺度可变形卷积的YOLOv5方法(YOLOv5s-4Scale-DCN),以用于汽车电池集流盘缺陷检测。首先,针对不同尺度的缺陷目标,在YOLOv5模型的基础上新增检测层,通过捕获不同尺度缺陷的特征以及融合不同深度的语义特征,提高对不同尺度缺陷目标的检测率;其次,引入可变形卷积,扩大特征图的感受野,使提取的特征辨析力更强,有效地提高了模型的缺陷识别能力。实验结果表明,所提的YOLOv5s-4Scale-DCN算法可以有效检测新能源汽车电池集流盘缺陷,m AP达到了91%,相较原算法提高了2.5%,FPS达到了113.6,重度不良和无盖缺陷这两种类别的缺陷,检测召回率达到了100%,满足新能源汽车电池集流盘缺陷实时检测要求。

二、网络模型及核心创新点

1.新增检测层

2.可变形卷积核

三、应用数据集(模型构建过程)

本文实验所用的数据集为自行构建,使用从生产线上收集的真实磷酸铁锂汽车电池集流盘缺陷数据,由高分辨率巴斯勒工业相机在光线良好的室内环境下进行拍摄采集。原始图像分辨率为2448×2048,在预处理阶段通过Python以电极孔为中心对原始图像进行裁剪,去除无关背景,保留有用信息,截取之后的图像分辨率为1250×1200。使用Lableme数据标注工具对图片进行标注,标注后自动生成JSON格式的文件,文件名与图片名始终保持一致。 图8为良品图像和常见的5种新能源汽车电池集流盘缺陷类型:焊穿(Weld through)、焊偏(Welding offset)、无盖(No cover)、坏点(Bad point)、重度不良(Severely bad)。

四、实验效果(部分展示)

为了评估算法性能,我们将本文提出的YOLOv5s-4Scale-DCN改进算法与YOLOv5s、YOLOv5l、YOLOv5m、YOLOv5n、YOLOv5x、YOLOv7、YOLOv tiny、YOLOv7x、Faster R-CNN[26]和SSD[27]10种经典算法在自制据集上进行检测性能比较,所有实验均在相同参数设置下进行。

实验结果如表4所示,由表4可知,改进后的算法,mAP达到了91.0%,FPS达到了113.6,相比其他算法综合效果最佳。

五、实验结论

综上所述,改进后的YOLOv5s-4Scale-DCN算法漏检率低、误检率低、识别精度高、检测速度快,综合性能更强,有效降低了误检率、漏检率

六、投稿期刊介绍

​注:论文原文出自 陈彦蓉,高刃,吴文欢,唐海,袁磊.改进YOLOv5的新能源电池集流盘缺陷检测方法[J/OL].电子测量与仪器学报. 改进YOLOv5的新能源电池集流盘缺陷检测方法 - 中国知网 解读的系列文章,本人已进行创新点代码复现。

猜你喜欢

转载自blog.csdn.net/m0_70388905/article/details/130362074
今日推荐