反射,折射,菲涅尔反射Shader实现

反射 - 对物体表面进行反射处理
折射 - 对物体表面进行折射处理
菲涅尔反射 - 对物体入射角越小的反射效果越好,越大的边界反射亮度越大。(大概就是这样,具体查百度)

菲涅尔反射的效果跟接近现实中环境反射
它们都需要使用立方体纹理,也就是环境映射纹理

反射

Shader "Unlit/ReflectionShader"
{
    
    
    Properties
    {
    
    
        _Color ("Color Tint", Color) = (1, 1, 1, 1)
        _ReflectColor ("Reflect Color", Color) = (1, 1, 1, 1)
        _ReflectAmount ("Reflect Amount", Range(0, 1)) = 1
        _Cubemap ("Reflection", Cube) = "_Skybox" {
    
    }
    }
    SubShader
    {
    
    
        Tags {
    
     "RenderType" = "Opaque" "Queue" = "Geometry"}
        
        Pass
        {
    
    
            Tags {
    
     "LightMode" = "ForwardBase" }
            
            CGPROGRAM

            #pragma multi_compile_fwdbase

            #pragma vertex vert
            #pragma fragment frag

            #include <Lighting.cginc>
			#include <AutoLight.cginc>

            struct a2v
            {
    
    
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
    
    
                float4 pos : SV_POSITION;
                float3 worldPos : TEXCOORD0;
                float3 worldNormal : TEXCOORD1;
                
                SHADOW_COORDS(4)
            };

            fixed4 _Color;
            fixed4 _ReflectColor;
            fixed _ReflectAmount;
            samplerCUBE _Cubemap;

            v2f vert(a2v v)
            {
    
    
                v2f o;

                o.pos = UnityObjectToClipPos(v.vertex.xyz);
                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
                o.worldNormal = UnityObjectToWorldNormal(v.normal);

                TRANSFER_SHADOW(o);
                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
    
    
                fixed3 worldNormal = normalize(i.worldNormal);
                fixed3 litDir = normalize(UnityWorldSpaceLightDir(i.worldPos));
                fixed3 viewDir = normalize(UnityWorldSpaceViewDir(i.worldPos));
                fixed3 refl = reflect(-viewDir, worldNormal);

                //环境光
                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                //漫反射
                fixed3 diffuse = _LightColor0.rgb * _Color.rgb * (dot(litDir, worldNormal) * 0.5 + 0.5);

                //读取环境纹理(使用反射)
                fixed3 reflection = texCUBE(_Cubemap, refl).rgb * _ReflectColor.rgb;

                UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos);

                return fixed4(ambient + lerp(diffuse, reflection, _ReflectAmount) * atten, 1.0);
            }
            
            ENDCG
        }
    }
    //FallBack "Standard"
}

折射

Shader "Unlit/RefractionShader"
{
    
    
    Properties
    {
    
    
        _Color ("Color Tint", Color) = (1, 1, 1, 1)
        _RefractColor ("Refract Color", Color) = (1, 1, 1, 1)
        _RefractAmount ("Refract Amount", Range(0, 1)) = 1
        _RefractRatio ("Refract Ratio", Range(0, 1)) = 0.5
        _Cubemap ("Cubemap", Cube) = "_Skybox" {
    
    }    
    }
    SubShader
    {
    
    
        Tags {
    
     "RenderType"="Opaque" "Queue" = "Geometry" }

        Pass
        {
    
    
            Tags {
    
     "LightMode" = "ForwardBase" }
            
            CGPROGRAM

            #pragma multi_compile_fwdbase
            
            #pragma vertex vert
            #pragma fragment frag

            #include <Lighting.cginc>
            #include <AutoLight.cginc>

            struct a2v
            {
    
    
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
    
    
                float4 pos : SV_POSITION;
                float3 worldPos : TEXCOORD0;
                float3 worldNormal : TEXCOORD1;

                SHADOW_COORDS(4)
            };

            fixed4 _Color;
            fixed4 _RefractColor;
            fixed _RefractAmount;
            fixed _RefractRatio;
            samplerCUBE _Cubemap;

            v2f vert(a2v v)
            {
    
    
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);

                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
                o.worldNormal = UnityObjectToWorldNormal(v.normal);

                TRANSFER_SHADOW(o);

                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
    
    
                fixed3 worldNormal = normalize(i.worldNormal);
                fixed3 litDir = normalize(UnityWorldSpaceLightDir(i.worldPos));
                fixed3 viewDir = normalize(UnityWorldSpaceViewDir(i.worldPos));
                fixed3 refr = normalize(refract(-viewDir, worldNormal, _RefractRatio));

                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;

                fixed3 diffuse = _LightColor0.rgb * _Color.rgb * (dot(litDir, worldNormal) * 0.5 + 0.5);

                fixed3 refraction = texCUBE(_Cubemap, refr).rgb * _RefractColor.rgb;

                UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos);

                return fixed4(ambient + lerp(diffuse, refraction, _RefractAmount) * atten, 1.0);                
            }
            
            ENDCG
        }
    }
    
    //FallBack "Standard"
}

菲涅尔反射

Shader "Unlit/Fresnel"
{
    
    
    Properties
    {
    
    
        _Color ("Color Tint", Color) = (1, 1, 1, 1)
        _FresnelScale ("Fresnel Scale", Range(0, 1)) = 0.5
        _Cubemap ("Cubemap", Cube) = "_Skybox" {
    
    }
    }
    SubShader
    {
    
    
        Tags {
    
     "RenderType" = "Opaque" "Queue" = "Geometry" }
        
        Pass
        {
    
    
            Tags {
    
     "LightMode" = "ForwardBase" }
            
            CGPROGRAM

            #pragma multi_compile_fwdbase

            #pragma vertex vert
            #pragma fragment frag

            #include <Lighting.cginc>
            #include <AutoLight.cginc>

            struct a2v
            {
    
    
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
    
    
                float4 pos : SV_POSITION;
                float3 worldPos : TEXCOORD0;
                float3 worldNormal : TEXCOORD1;
                SHADOW_COORDS(4)
            };

            fixed4 _Color;
            fixed _FresnelScale;
            samplerCUBE _Cubemap;

            v2f vert(a2v v)
            {
    
    
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);
                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
                o.worldNormal = UnityObjectToWorldNormal(v.normal);

                TRANSFER_SHADOW(o);
                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
    
    
                fixed3 worldNormal = normalize(i.worldNormal);
                fixed3 litDir = normalize(UnityWorldSpaceLightDir(i.worldPos));
                fixed3 viewDir = normalize(UnityWorldSpaceViewDir(i.worldPos));
                fixed3 refl = normalize(reflect(-viewDir, worldNormal));

                fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
                fixed3 diffuse = _LightColor0.rgb * _Color.rgb * (dot(litDir, worldNormal) * 0.5 + 0.5);

                fixed fresnel = _FresnelScale + (1 - _FresnelScale) * pow(1 - dot(viewDir, worldNormal), 5);
                fixed3 reflection = texCUBE(_Cubemap, refl);

                UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos);

                return fixed4(ambient + lerp(diffuse, reflection, fresnel) * atten, 1.0);
            }
            
            ENDCG
        }
    }
}

<<Unity Shader 入门精要>> - 高级纹理中反射,折射,菲涅尔反射的实现。

猜你喜欢

转载自blog.csdn.net/m0_52361859/article/details/127588221