暴力题:等差素序列

AC代码1:(暴力枚举首项、公差,然后利用公差的公式判断10个素数是否满足公差为d的连续,更新最小公差)

import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.stream.Collectors;

public class Main
{
    static PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
    static int N = (int)1e3 + 10;
    static int INF = 0x3f3f3f3f;
    static math math_me = new math();
    static Set<Integer> set = new HashSet<>();

    public static void main(String[] args ) throws IOException
    {
        int min_d = INF;
        int k;
        for(int i = 2 ; i <= N ; i ++)  // 枚举每一个首项
        {
            for(int j = 2 ; j <= N ; j ++) // 枚举每一个公差
            {
                for(k = 0 ; k <= 9 ; k ++) // an = i + k*j
                {
                    if(!math_me.check_isPrime(i + k * j))  break; // 在检测到公差为j的10个数是否都是宿舍的过程中,发现有不是宿舍的,跳出循环
                }
                if(k == 10)  // 可构成连续个10个素数
                {
                    if(j < min_d)  min_d = j; //更新公差
                }
            }
        }
        pw.println(min_d);
        pw.flush();
    }
}

class rd
{
    static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    static StringTokenizer tokenizer = new StringTokenizer("");

    static String nextLine() throws IOException { return reader.readLine(); }
    static String next() throws IOException
    {
        while(!tokenizer.hasMoreTokens())  tokenizer = new StringTokenizer(reader.readLine());
        return tokenizer.nextToken();
    }
    static int nextInt() throws IOException { return Integer.parseInt(next()); }
    static double nextDouble() throws IOException { return Double.parseDouble(next()); }
    static long nextLong() throws IOException { return Long.parseLong(next()); }
    static BigInteger nextBigInteger() throws IOException
    {
        BigInteger d = new BigInteger(rd.nextLine());
        return d;
    }
}

class math
{
    int gcd(int a,int b)
    {
        if(b == 0)  return a;
        else return gcd(b,a % b);
    }

    int lcm(int a,int b)
    {
        return a * b / gcd(a, b);
    }

    // 求n的所有约数
    List get_factor(int n)
    {
        List<Long> a = new ArrayList<>();
        for(long i = 1; i <= Math.sqrt(n) ; i ++)
        {
            if(n % i == 0)
            {
                a.add(i);
                if(i != n / i)  a.add(n / i);  // // 避免一下的情况:x = 16时,i = 4 ,x / i = 4的情况,这样会加入两种情况  ^-^复杂度能减少多少是多少
            }
        }

        // 相同因子去重,这个方法,完美
        a = a.stream().distinct().collect(Collectors.toList());

        // 对因子排序(升序)
        Collections.sort(a);

        return a;
    }

    // 判断是否是质数
    boolean check_isPrime(int n)
    {
        if(n < 2) return false;
        for(int i = 2 ; i <= n / i; i ++)  if (n % i == 0) return false;
        return true;
    }
}

class PII implements Comparable<PII>
{
    int x,y;
    public PII(int x ,int y)
    {
        this.x = x;
        this.y = y;
    }
    public int compareTo(PII a)
    {
        if(this.x-a.x != 0)
            return this.x-a.x;  //按x升序排序
        else return this.y-a.y;  //如果x相同,按y升序排序
    }
}

class Edge
{
    int a,b,c;
    public Edge(int a ,int b, int c)
    {
        this.a = a;
        this.b = b;
        this.c = c;
    }
}

class Line implements Comparable<Line>
{
    double k; // 斜率
    double b; // 截距

    public Line(double k, double b)
    {
        this.k = k;
        this.b = b;
    }

    @Override
    public int compareTo(Line o)
    {
        if (this.k > o.k) return 1;
        if (this.k == o.k)
        {
            if (this.b > o.b) return 1;
            return -1;
        }
        return -1;
    }
}

class mqm
{
    int fa[] = new int[1005];
    void init()
    {
        for(int i = 1 ; i <= 1000 ; i ++)  fa[i] = i;
    }
    void merge(int x, int y) { fa[find(x)] = find(y); }
    int find(int x)
    {
        if(x != fa[x])  fa[x] = find(fa[x]);
        return fa[x];
    }
    boolean query(int x, int y) { return find(x) == find(y); }
}

猜你喜欢

转载自blog.csdn.net/RGHLY21/article/details/129782717