Chapter3.2:时域分析法

此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础



第三章:时域分析法

Example 3.11

设系统特征方程如下,用赫尔维茨判据确定使系统稳定的 K K K值范围.
s 4 + 4 s 3 + 13 s 2 + 36 s + K = 0 s^4+4s^3+13s^2+36s+K=0 s4+4s3+13s2+36s+K=0
解:

由特征方程可知, n = 4 n=4 n=4,且 a 0 = 1 , a 1 = 4 , a 2 = 13 , a 3 = 36 , a 4 = K a_0=1,a_1=4,a_2=13,a_3=36,a_4=K a0=1,a1=4,a2=13,a3=36,a4=K.

若系统稳定,需要满足如下条件:

  1. 特征方程各项系数为正;
  2. Δ 2 = a 1 a 2 − a 0 a 3 > 0 \Delta_2=a_1a_2-a_0a_3>0 Δ2=a1a2a0a3>0
  3. Δ 2 > a 1 2 a 4 / a 3 \Delta_2>a_1^2a_4/a_3 Δ2>a12a4/a3


{ K > 0 52 − 36 > 0 52 − 36 > 16 K / 36 ⇒ { K > 0 K < 36 ⇒ 0 < K < 36 \begin{cases} &K>0\\ &52-36>0\\ &52-36>16K/36 \end{cases}\Rightarrow\begin{cases} &K>0\\ &K<36 \end{cases}\Rightarrow 0<K<36 K>05236>05236>16K/36{ K>0K<360<K<36
故要使系统稳定的 K K K的取值范围为: 0 < K < 36 0<K<36 0<K<36.

Example 3.12

已知单位反馈控制系统的开环传递函数如下,求当输入信号为: 1 ( t ) 、 t 、 t 2 1(t)、t、t^2 1(t)tt2时,系统的稳态误差: e s s p ( ∞ ) 、 e s s v ( ∞ ) 、 e s s a ( ∞ ) e_{ssp}(\infty)、e_{ssv}(\infty)、e_{ssa}(\infty) essp()essv()essa().
G ( s ) = 7 ( s + 1 ) s ( s + 4 ) ( s 2 + 2 s + 2 ) G(s)=\frac{7(s+1)}{s(s+4)(s^2+2s+2)} G(s)=s(s+4)(s2+2s+2)7(s+1)
解:

由系统开环传递函数可得,闭环系统的特征方程为:
D ( s ) = s ( s + 4 ) ( s 2 + 2 s + 2 ) + 7 ( s + 1 ) = s 4 + 6 s 3 + 10 s 2 + 15 s + 7 = 0 D(s)=s(s+4)(s^2+2s+2)+7(s+1)=s^4+6s^3+10s^2+15s+7=0 D(s)=s(s+4)(s2+2s+2)+7(s+1)=s4+6s3+10s2+15s+7=0
由赫尔维茨判据可知, n = 4 n=4 n=4,各项系数分别为: a 0 = 1 , a 1 = 6 , a 2 = 10 , a 3 = 15 , a 4 = 7 a_0=1,a_1=6,a_2=10,a_3=15,a_4=7 a0=1,a1=6,a2=10,a3=15,a4=7均为正,且 Δ 2 = a 1 a 2 − a 0 a 3 = 45 > 0 \Delta_2=a_1a_2-a_0a_3=45>0 Δ2=a1a2a0a3=45>0,及 Δ 2 > a 1 2 a 4 / a 3 = 16.8 \Delta_2>a_1^2a_4/a_3=16.8 Δ2>a12a4/a3=16.8,因此,系统稳定.

由开环传递函数 G ( s ) G(s) G(s)可知,系统是Ⅰ型系统,且 K = 7 / 8 K=7/8 K=7/8.故系统在 1 ( t ) 、 t 、 t 2 1(t)、t、t^2 1(t)tt2输入信号作用下的稳态误差分别为:
e s s p ( ∞ ) = 0 , e s s v ( ∞ ) = 1 / K = 1.143 , e s s a ( ∞ ) = ∞ e_{ssp}(\infty)=0,e_{ssv}(\infty)=1/K=1.143,e_{ssa}(\infty)=\infty essp()=0,essv()=1/K=1.143,essa()=

Example 3.13

设单位反馈系统的开环传递函数为: G ( s ) = 1 T s G(s)=\displaystyle\frac{1}{Ts} G(s)=Ts1,用动态误差系数法求当输入信号分别为: r ( t ) = t 2 2 、 r ( t ) = sin ⁡ 2 t r(t)=\displaystyle\frac{t^2}{2}、r(t)=\sin2t r(t)=2t2r(t)=sin2t时,控制系统的稳态误差.

解:

由题设可知,系统属于单位反馈系统,则系统的误差传递函数为:
Φ e ( s ) = E ( s ) R ( s ) = 1 1 + G ( s ) = T s 1 + T s = T s − ( T s ) 2 + ( T s ) 3 − ( T s ) 4 + ⋯ = C 0 + C 1 s + C 2 s 2 + C 3 s 3 + ⋯ \begin{aligned} \Phi_e(s)&=\frac{E(s)}{R(s)}=\frac{1}{1+G(s)}=\frac{Ts}{1+Ts}=Ts-(Ts)^2+(Ts)^3-(Ts)^4+\cdots\\\\ &=C_0+C_1s+C_2s^2+C_3s^3+\cdots \end{aligned} Φe(s)=R(s)E(s)=1+G(s)1=1+TsTs=Ts(Ts)2+(Ts)3(Ts)4+=C0+C1s+C2s2+C3s3+
所以:
E ( s ) = Φ e ( s ) ⋅ R ( s ) = ( C 0 + C 1 s + C 2 s 2 + C 3 s 3 + ⋯   ) R ( s ) E(s)=\Phi_e(s)\cdot{R(s)}=(C_0+C_1s+C_2s^2+C_3s^3+\cdots)R(s) E(s)=Φe(s)R(s)=(C0+C1s+C2s2+C3s3+)R(s)
故动态误差系数为:
C 0 = 0 , C 1 = T , C 2 = − T 2 , C 3 = T 3 , C 4 = − T 4 , ⋯ C_0=0,C_1=T,C_2=-T^2,C_3=T^3,C_4=-T^4,\cdots C0=0,C1=T,C2=T2,C3=T3,C4=T4,
本系统为Ⅰ型系统,有: C 1 = 1 K v C_1=\displaystyle\frac{1}{K_v} C1=Kv1,其中 K v K_v Kv为静态速度误差系数,故当 r ( t ) = t 2 / 2 r(t)=t^2/2 r(t)=t2/2时,有 e s s ( ∞ ) = ∞ e_{ss}(\infty)=\infty ess()=.

【又解】

E ( s ) E(s) E(s)在零初始条件下进行拉普拉斯反变换,可得:
e ( t ) = T ⋅ r ˙ ( t ) − T 2 ⋅ r ¨ ( t ) + T 3 ⋅ r ( 3 ) ( t ) − T 4 ⋅ r ( 4 ) ( t ) + ⋯ e(t)=T\cdot{\dot{r}(t)}-T^2\cdot\ddot{r}(t)+T^3\cdot{r^{(3)}}(t)-T^4\cdot{r^{(4)}(t)}+\cdots e(t)=Tr˙(t)T2r¨(t)+T3r(3)(t)T4r(4)(t)+
r ( t ) = t 2 / 2 r(t)=t^2/2 r(t)=t2/2时,有:
r ˙ ( t ) = t , r ¨ ( t ) = 1 , r ( 3 ) ( t ) = r ( 4 ) ( t ) = ⋯ = 0 \dot{r}(t)=t,\ddot{r}(t)=1,{r^{(3)}}(t)=r^{(4)}(t)=\cdots=0 r˙(t)=t,r¨(t)=1,r(3)(t)=r(4)(t)==0
可得:
e ( t ) = T t − T 2 = T ( t − T ) e(t)=Tt-T^2=T(t-T) e(t)=TtT2=T(tT)
故系统的稳态误差为:
e s s ( ∞ ) = lim ⁡ t → ∞ e s s ( t ) = lim ⁡ t → ∞ T ( t − T ) = ∞ e_{ss}(\infty)=\lim_{t\to\infty}e_{ss}(t)=\lim_{t\to\infty}T(t-T)=\infty ess()=tlimess(t)=tlimT(tT)=
r ( t ) = sin ⁡ 2 t r(t)=\sin2t r(t)=sin2t时,有:
r ˙ ( t ) = 2 cos ⁡ 2 t , r ¨ ( t ) = − 2 2 sin ⁡ 2 t , r ( 3 ) ( t ) = − 2 3 cos ⁡ 2 t , r ( 4 ) ( t ) = 2 4 sin ⁡ 2 t , ⋯ \dot{r}(t)=2\cos2t,\ddot{r}(t)=-2^2\sin2t,{r^{(3)}}(t)=-2^3\cos2t,r^{(4)}(t)=2^4\sin2t,\cdots r˙(t)=2cos2t,r¨(t)=22sin2t,r(3)(t)=23cos2t,r(4)(t)=24sin2t,
可得:
e s s ( t ) = T ⋅ ( 2 cos ⁡ 2 t ) − T 2 ⋅ ( − 2 2 sin ⁡ 2 t ) + T 3 ⋅ ( − 2 3 cos ⁡ 2 t ) − T 4 ⋅ ( 2 4 sin ⁡ 2 t ) + … = cos ⁡ 2 t [ 2 T − ( 2 T ) 3 + ( 2 T ) 5 − ⋯   ] + sin ⁡ 2 t [ ( 2 T ) 2 − ( 2 T ) 4 + ( 2 T ) 6 − ⋯   ] = 2 T 1 + 4 T 2 cos ⁡ 2 t + 4 T 2 1 + 4 T 2 sin ⁡ 2 t = 2 T 1 + 4 T 2 sin ⁡ ( 2 t + arctan ⁡ 1 2 T ) \begin{aligned} e_{ss}(t)&=T\cdot(2\cos2t)-T^2\cdot(-2^2\sin2t)+T^3\cdot(-2^3\cos2t)-T^4\cdot(2^4\sin2t)+\dots\\\\ &=\cos2t[2T-(2T)^3+(2T)^5-\cdots]+\sin2t[(2T)^2-(2T)^4+(2T)^6-\cdots]\\\\ &=\frac{2T}{1+4T^2}\cos2t+\frac{4T^2}{1+4T^2}\sin2t\\\\ &=\frac{2T}{\sqrt{1+4T^2}}\sin\left(2t+\arctan\displaystyle\frac{1}{2T}\right) \end{aligned} ess(t)=T(2cos2t)T2(22sin2t)+T3(23cos2t)T4(24sin2t)+=cos2t[2T(2T)3+(2T)5]+sin2t[(2T)2(2T)4+(2T)6]=1+4T22Tcos2t+1+4T24T2sin2t=1+4T2 2Tsin(2t+arctan2T1)

Example 3.14

设舰船消摆系统如下图所示,其中 n ( t ) n(t) n(t)为海涛力矩产生,且所有参数绘中除 K 1 K_1 K1外均为已知正值.如果 n ( t ) = 10 ° × 1 ( t ) n(t)=10°\times1(t) n(t)=10°×1(t),求确保稳态误差值: ∣ e s s n ( ∞ ) ∣ ≤ 0.1 ° |e_{ssn}(\infty)|≤0.1° essn()0.1° K 1 K_1 K1值( e ( t ) e(t) e(t)在输入端定义).
1
解:

由图可知,系统特征方程为:
D ( s ) = ( 1 / ω n 2 ) s 2 + ( 2 ζ / ω n ) s + 1 + K 1 K 2 = 0 D(s)=(1/\omega_n^2)s^2+(2\zeta/\omega_n)s+1+K_1K_2=0 D(s)=(1/ωn2)s2+(2ζ/ωn)s+1+K1K2=0
由赫尔维茨判据可知,系统特征方程中 n = 2 n=2 n=2且各项系数为正,因此系统是稳定的.

由图可知,舰船消摆系统为一负反馈系统,且在扰动 N ( s ) N(s) N(s)作用下,其前向通道传递函数为
G ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 G(s)=\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2} G(s)=s2+2ζωns+ωn2ωn2
反馈通道传递函数为:
H ( s ) = K 1 K 2 H(s)=K_1K_2 H(s)=K1K2

Θ o ( s ) = G ( s ) 1 + G ( s ) H ( s ) N ( s ) = 1 ( 1 / ω n 2 ) s 2 + ( 2 ζ / ω n ) s + 1 + K 1 K 2 N ( s ) \Theta_o(s)=\frac{G(s)}{1+G(s)H(s)}N(s)=\frac{1}{(1/\omega_n^2)s^2+(2\zeta/\omega_n)s+1+K_1K_2}N(s) Θo(s)=1+G(s)H(s)G(s)N(s)=(1/ωn2)s2+(2ζ/ωn)s+1+K1K21N(s)
由于 e ( t ) e(t) e(t)在输入端定义,可得:
E n ( s ) = 0 − K 2 Θ o ( s ) = − K 2 ( 1 / ω n 2 ) s 2 + ( 2 ζ / ω n ) s + 1 + K 1 K 2 N ( s ) E_n(s)=0-K_2\Theta_o(s)=-\frac{K_2}{(1/\omega_n^2)s^2+(2\zeta/\omega_n)s+1+K_1K_2}N(s) En(s)=0K2Θo(s)=(1/ωn2)s2+(2ζ/ωn)s+1+K1K2K2N(s)
由终值定理可得:
∣ e s s n ( ∞ ) ∣ = ∣ lim ⁡ s → 0 s E n ( s ) ∣ = lim ⁡ s → 0 s ⋅ K 2 ( 1 / ω n 2 ) s 2 + ( 2 ζ / ω n ) s + 1 + K 1 K 2 N ( s ) = lim ⁡ s → 0 s ⋅ K 2 ( 1 / ω n 2 ) s 2 + ( 2 ζ / ω n ) s + 1 + K 1 K 2 ⋅ 10 s = 10 K 2 1 + K 1 K 2 ≤ 0.1 \begin{aligned} |e_{ssn}(\infty)|&=\left|\lim_{s\to0}sE_n(s)\right|=\lim_{s\to0}s\cdot\frac{K_2}{(1/\omega_n^2)s^2+(2\zeta/\omega_n)s+1+K_1K_2}N(s)\\\\ &=\lim_{s\to0}s\cdot\frac{K_2}{(1/\omega_n^2)s^2+(2\zeta/\omega_n)s+1+K_1K_2}\cdot\frac{10}{s}=\frac{10K_2}{1+K_1K_2}≤0.1 \end{aligned} essn()= s0limsEn(s) =s0lims(1/ωn2)s2+(2ζ/ωn)s+1+K1K2K2N(s)=s0lims(1/ωn2)s2+(2ζ/ωn)s+1+K1K2K2s10=1+K1K210K20.1
故确保稳态误差值 ∣ e s s n ( ∞ ) ∣ ≤ 0.1 ° |e_{ssn}(\infty)|≤0.1° essn()0.1° K 1 K_1 K1值范围为: K 1 = 100 − 1 / K 2 K_1=100-1/K_2 K1=1001/K2.

Example 3.15

控制系统如下图所示:
2
要求:

  1. a = 0 a=0 a=0时,确定系统的阻尼比 ζ \zeta ζ、自然频率 ω n \omega_n ωn和单位斜坡函数输入时系统的稳态误差 e s s ( ∞ ) e_{ss}(\infty) ess()
  2. ζ = 0.7 \zeta=0.7 ζ=0.7时,确定参数 a a a的值及单位斜坡函数输入 时系统的稳态误差 e s s ( ∞ ) e_{ss}(\infty) ess()
  3. 在保证 ζ = 0.7 \zeta=0.7 ζ=0.7 e s s ( ∞ ) = 0.25 e_{ss}(\infty)=0.25 ess()=0.25条件下,确定参数 a a a及前向通道增益 K K K

解:

  1. a = 0 a=0 a=0.

    由图可得,系统开环传递函数为:
    G ( s ) = 8 s ( s + 2 ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\frac{8}{s(s+2)}=\frac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=s(s+2)8=s(s+2ζωn)ωn2
    则系统的自然频率和阻尼比为:
    ω n = 2 2 = 2.83 , ζ = 2 / 4 = 0.35 \omega_n=2\sqrt{2}=2.83,\zeta=\sqrt{2}/4=0.35 ωn=22 =2.83,ζ=2 /4=0.35
    由开环传递函数可知,系统为Ⅰ型系统,且 K v = 4 K_v=4 Kv=4,故在单位斜坡函数输入时,系统的稳态误差为:
    e s s ( ∞ ) = 1 / K v = 0.25 e_{ss}(\infty)=1/K_v=0.25 ess()=1/Kv=0.25

  2. a ≠ 0 , ζ = 0.7 a≠0,\zeta=0.7 a=0ζ=0.7.

    由图可得,系统开环传递函数为:
    G ( s ) = 8 s ( s + 2 + 8 a ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\frac{8}{s(s+2+8a)}=\frac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=s(s+2+8a)8=s(s+2ζωn)ωn2

    ω n = 2 2 = 2.83 , a = ζ ω n − 1 4 = 0.245 \omega_n=2\sqrt{2}=2.83,a=\frac{\zeta\omega_n-1}{4}=0.245 ωn=22 =2.83,a=4ζωn1=0.245
    由于系统是Ⅰ型系统,且 K v = 8 / ( 2 + 8 a ) = 2.02 K_v=8/(2+8a)=2.02 Kv=8/(2+8a)=2.02,故单位斜坡函数输入时,系统的稳态误差为:
    e s s ( ∞ ) = 1 / K v = 0.495 e_{ss}(\infty)=1/K_v=0.495 ess()=1/Kv=0.495

  3. ζ = 0.7 , e s s ( ∞ ) = 0.25 \zeta=0.7,e_{ss}(\infty)=0.25 ζ=0.7ess()=0.25.

    设前向通道增益为 K K K,则开环传递函数为:
    G ( s ) = K s ( s + 2 + K a ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\frac{K}{s(s+2+Ka)}=\frac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=s(s+2+Ka)K=s(s+2ζωn)ωn2
    系统为Ⅰ型系统,且 K v = K / ( 2 + K a ) K_v=K/(2+Ka) Kv=K/(2+Ka),单位斜坡函数输入时,系统的稳态误差为:
    e s s ( ∞ ) = 1 / K v = 2 / K + a e_{ss}(\infty)=1/K_v=2/K+a ess()=1/Kv=2/K+a
    代入 ζ = 0.7 , e s s ( ∞ ) = 0.25 \zeta=0.7,e_{ss}(\infty)=0.25 ζ=0.7,ess()=0.25,有:
    { ω n 2 = K 1.4 ⋅ ω n = 2 + K a 2 / K + a = 0.25 ⇒ { ω n = 5.6 K = 3.16 a = 0.186 \begin{cases} &\omega_n^2=K\\ &1.4\cdot\omega_n=2+Ka\\ &2/K+a=0.25 \end{cases}\Rightarrow \begin{cases} &\omega_n=5.6\\ &K=3.16\\ &a=0.186 \end{cases} ωn2=K1.4ωn=2+Ka2/K+a=0.25 ωn=5.6K=3.16a=0.186
    故在保证 ζ = 0.7 \zeta=0.7 ζ=0.7 e s s ( ∞ ) = 0.25 e_{ss}(\infty)=0.25 ess()=0.25条件下,参数 a = 0.186 a=0.186 a=0.186,前向通道增益 K = 3.16 K=3.16 K=3.16

Example 3.16

已知单位反馈系统的开环传递函数如下:
G ( s ) = K s ( 0.1 s + 1 ) ( 0.5 s + 1 ) G(s)=\frac{K}{s(0.1s+1)(0.5s+1)} G(s)=s(0.1s+1)(0.5s+1)K
求位置误差系数 K p K_p Kp、速度误差系数 K v K_v Kv、加速度误差系数 K a K_a Ka,并确定输入 r ( t ) = 2 t r(t)=2t r(t)=2t时,系统的稳态误差 e s s ( ∞ ) e_{ss}(\infty) ess().

解:

根据静态误差系数定义式可得:
K p = lim ⁡ s → 0 G ( s ) H ( s ) = lim ⁡ s → 0 K s ( 0.1 s + 1 ) ( 0.5 s + 1 ) = ∞ K v = lim ⁡ s → 0 s ⋅ G ( s ) H ( s ) = lim ⁡ s → 0 s ⋅ K s ( 0.1 s + 1 ) ( 0.5 s + 1 ) = K K a = lim ⁡ s → 0 s 2 ⋅ K s ( 0.1 s + 1 ) ( 0.5 s + 1 ) = lim ⁡ s → 0 s 2 ⋅ K s ( 0.1 s + 1 ) ( 0.5 s + 1 ) = 0 \begin{aligned} &K_p=\lim_{s\to0}G(s)H(s)=\lim_{s\to0}\frac{K}{s(0.1s+1)(0.5s+1)}=\infty\\\\ &K_v=\lim_{s\to0}s\cdot{G(s)H(s)}=\lim_{s\to0}s\cdot{\frac{K}{s(0.1s+1)(0.5s+1)}}=K\\\\ &K_a=\lim_{s\to0}s^2\cdot{\frac{K}{s(0.1s+1)(0.5s+1)}}=\lim_{s\to0}s^2\cdot{\frac{K}{s(0.1s+1)(0.5s+1)}}=0 \end{aligned} Kp=s0limG(s)H(s)=s0lims(0.1s+1)(0.5s+1)K=Kv=s0limsG(s)H(s)=s0limss(0.1s+1)(0.5s+1)K=KKa=s0lims2s(0.1s+1)(0.5s+1)K=s0lims2s(0.1s+1)(0.5s+1)K=0
由系统的开环函数可知,该系统为Ⅰ型系统,故在输入 r ( t ) = 2 t r(t)=2t r(t)=2t时,系统的稳态误差为:
e s s ( ∞ ) = R / K v = 2 / K e_{ss}(\infty)=R/K_v=2/K ess()=R/Kv=2/K

Example 3.17

设闭环传递函数的一般形式为:
Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \Phi(s)=\frac{G(s)}{1+G(s)H(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+\cdots+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} Φ(s)=1+G(s)H(s)G(s)=sn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0
误差定义为: e ( t ) = r ( t ) − c ( t ) e(t)=r(t)-c(t) e(t)=r(t)c(t).证明:

  1. 系统在阶跃信号输入下,稳态误差为零的充分条件是:
    Φ ( s ) = a 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \Phi(s)=\frac{a_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} Φ(s)=sn+an1sn1++a1s+a0a0

  2. 系统在斜坡信号输入下,稳态误差为零的充分条件是:
    Φ ( s ) = a 1 s + a 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \Phi(s)=\frac{a_1s+a_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} Φ(s)=sn+an1sn1++a1s+a0a1s+a0

  3. 推导系统在加速度信号输入下,稳态误差为零的充分条件.

证明:

根据误差定义可知,系统的误差传递函数为:
Φ e ( s ) = E ( s ) R ( s ) = R ( s ) − C ( s ) R ( s ) = 1 − Φ ( s ) = ( a 0 − b 0 ) + ( a 1 − b 1 ) s + ⋯ + ( a m − b m ) s m + a m + 1 s m + 1 + ⋯ + a n − 1 s n − 1 + s n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \begin{aligned} \Phi_e(s)&=\frac{E(s)}{R(s)}=\frac{R(s)-C(s)}{R(s)}=1-\Phi(s)\\\\ &=\frac{(a_0-b_0)+(a_1-b_1)s+\cdots+(a_m-b_m)s^m+a_{m+1}s^{m+1}+\cdots+a_{n-1}s^{n-1}+s^n}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} \end{aligned} Φe(s)=R(s)E(s)=R(s)R(s)C(s)=1Φ(s)=sn+an1sn1++a1s+a0(a0b0)+(a1b1)s++(ambm)sm+am+1sm+1++an1sn1+sn

  1. 当系统在阶跃信号输入下, Φ ( s ) = a 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \Phi(s)=\displaystyle\frac{a_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} Φ(s)=sn+an1sn1++a1s+a0a0时,即:
    b 0 = a 0 , b i = 0 ( i = 1 , 2 , ⋯   , m ) b_0=a_0,b_i=0(i=1,2,\cdots,m) b0=a0bi=0(i=1,2,,m)

    Φ e ( s ) = a 1 s + a 2 s 2 + ⋯ + a n − 1 s n − 1 + s n s n + a n − 1 s + ⋯ + a 1 s + a 0 , R ( s ) = 1 s \Phi_e(s)=\frac{a_1s+a_2s^2+\cdots+a_{n-1}s^{n-1}+s^n}{s^n+a_{n-1}s+\cdots+a_1s+a_0},R(s)=\frac{1}{s} Φe(s)=sn+an1s++a1s+a0a1s+a2s2++an1sn1+snR(s)=s1
    由终值定理可得:
    e s s ( ∞ ) = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = lim ⁡ s → 0 a 1 s + a 2 s 2 + ⋯ + a n − 1 s n − 1 + s n s n + a n − 1 s + ⋯ + a 1 s + a 0 = 0 e_{ss}(\infty)=\lim_{s\to0}s\Phi_e(s)R(s)=\lim_{s\to0}\frac{a_1s+a_2s^2+\cdots+a_{n-1}s^{n-1}+s^n}{s^n+a_{n-1}s+\cdots+a_1s+a_0}=0 ess()=s0limsΦe(s)R(s)=s0limsn+an1s++a1s+a0a1s+a2s2++an1sn1+sn=0
    因而充分条件得证.

  2. 当系统在斜坡信号输入下, Φ ( s ) = a 1 s + a 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \Phi(s)=\displaystyle\frac{a_1s+a_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} Φ(s)=sn+an1sn1++a1s+a0a1s+a0时,即:
    b 0 = a 0 , b 1 = a 1 , b i = 0 ( i = 2 , ⋯   , m ) b_0=a_0,b_1=a_1,b_i=0(i=2,\cdots,m) b0=a0,b1=a1,bi=0(i=2,,m)

    Φ e ( s ) = a 2 s 2 + ⋯ + a n − 1 s n − 1 + s n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 , R ( s ) = 1 s 2 \Phi_e(s)=\frac{a_2s^2+\cdots+a_{n-1}s^{n-1}+s^{n}}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0},R(s)=\frac{1}{s^2} Φe(s)=sn+an1sn1++a1s+a0a2s2++an1sn1+snR(s)=s21
    由终值定理可得:
    e s s ( ∞ ) = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = lim ⁡ s → 0 a 2 s 1 + ⋯ + a n − 1 s n − 2 + s n − 1 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 = 0 e_{ss}(\infty)=\lim_{s\to0}s\Phi_e(s)R(s)=\lim_{s\to0}\frac{a_2s^1+\cdots+a_{n-1}s^{n-2}+s^{n-1}}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0}=0 ess()=s0limsΦe(s)R(s)=s0limsn+an1sn1++a1s+a0a2s1++an1sn2+sn1=0
    因而充分条件得证.

  3. 同理可推导系统在单位加速度信号输入下,稳态误差为零的充分条件为:
    Φ ( s ) = a 2 s 2 + a 1 s + a 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \Phi(s)=\frac{a_2s^2+a_1s+a_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} Φ(s)=sn+an1sn1++a1s+a0a2s2+a1s+a0

    b 0 = a 0 , b 1 = a 1 , b 2 = a 2 , b i = 0 ( i = 3 , ⋯   , m ) b_0=a_0,b_1=a_1,b_2=a_2,b_i=0(i=3,\cdots,m) b0=a0,b1=a1,b2=a2,bi=0(i=3,,m)

    Φ e ( s ) = a 3 s 3 + ⋯ + a n − 1 s n − 1 + s n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 , R ( s ) = 1 s 3 \Phi_e(s)=\frac{a_3s^3+\cdots+a_{n-1}s^{n-1}+s^n}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0},R(s)=\frac{1}{s^3} Φe(s)=sn+an1sn1++a1s+a0a3s3++an1sn1+snR(s)=s31
    由终值定理可得:
    e s s ( ∞ ) = lim ⁡ s → 0 s Φ e ( s ) R ( s ) = lim ⁡ s → 0 a 3 s 1 + ⋯ + a n − 1 s n − 3 + s n − 2 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 = 0 e_{ss}(\infty)=\lim_{s\to0}s\Phi_e(s)R(s)=\lim_{s\to0}\frac{a_3s^1+\cdots+a_{n-1}s^{n-3}+s^{n-2}}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0}=0 ess()=s0limsΦe(s)R(s)=s0limsn+an1sn1++a1s+a0a3s1++an1sn3+sn2=0
    充分条件成立.

Exampel 3.18

若误差定义为: e ( t ) = r ( t ) − c ( t ) e(t)=r(t)-c(t) e(t)=r(t)c(t).求下图所示系统总的稳态误差 e s s ( ∞ ) e_{ss}(\infty) ess().
3
解:

【图a:前馈控制系统】

n ( t ) = 0 n(t)=0 n(t)=0时,系统的误差为:
E r ( s ) = R ( s ) − C ( s ) = R ( s ) − s + 1 s 2 + s + 1 R ( s ) = s 2 s 2 + s + 1 R ( s ) E_r(s)=R(s)-C(s)=R(s)-\frac{s+1}{s^2+s+1}R(s)=\frac{s^2}{s^2+s+1}R(s) Er(s)=R(s)C(s)=R(s)s2+s+1s+1R(s)=s2+s+1s2R(s)
根据误差定义,用终值定理求解系统的稳态误差,有:
e s s r ( ∞ ) = lim ⁡ s → 0 s ⋅ E r ( s ) = lim ⁡ s → 0 s ⋅ s 2 s 2 + s + 1 R ( s ) = lim ⁡ s → 0 s ⋅ s 2 s 2 + s + 1 ⋅ 1 s 2 = 0 \begin{aligned} e_{ssr}(\infty)&=\lim_{s\to0}s\cdot{E_r(s)}=\lim_{s\to0}s\cdot\frac{s^2}{s^2+s+1}R(s)\\ &=\lim_{s\to0}s\cdot\frac{s^2}{s^2+s+1}\cdot\frac{1}{s^2}=0 \end{aligned} essr()=s0limsEr(s)=s0limss2+s+1s2R(s)=s0limss2+s+1s2s21=0
r ( t ) = 0 r(t)=0 r(t)=0时,系统的误差为:
E n ( s ) = R ( s ) − C ( s ) = − s 2 + s s 2 + s + 1 N ( s ) E_n(s)=R(s)-C(s)=-\frac{s^2+s}{s^2+s+1}N(s) En(s)=R(s)C(s)=s2+s+1s2+sN(s)
根据误差定义,用终值定理求解系统的稳态误差,有:
e s s n ( ∞ ) = lim ⁡ s → 0 s E n ( s ) = lim ⁡ s → 0 [ − s ⋅ s 2 + s s 2 + s + 1 ⋅ N ( s ) ] = − lim ⁡ s → 0 s ⋅ s 2 + s s 2 + s + 1 ⋅ 1 s = 0 \begin{aligned} e_{ssn}(\infty)&=\lim_{s\to0}sE_n(s)=\lim_{s\to0}\left[-s\cdot\frac{s^2+s}{s^2+s+1}\cdot{N(s)}\right]\\\\ &=-\lim_{s\to0}s\cdot\frac{s^2+s}{s^2+s+1}\cdot\frac{1}{s}=0 \end{aligned} essn()=s0limsEn(s)=s0lim[ss2+s+1s2+sN(s)]=s0limss2+s+1s2+ss1=0
则总的稳态误差为:
e s s ( ∞ ) = e s s r ( ∞ ) + e s s n ( ∞ ) = 0 e_{ss}(\infty)=e_{ssr}(\infty)+e_{ssn}(\infty)=0 ess()=essr()+essn()=0
【图b:反馈控制系统】

n ( t ) = 0 n(t)=0 n(t)=0时,系统的误差:
E r ( s ) = R ( s ) − C ( s ) = R ( s ) − 200 0.5 s 2 + s + 200 R ( s ) = 0.5 s 2 + s 0.5 s 2 + s + 200 R ( s ) E_r(s)=R(s)-C(s)=R(s)-\frac{200}{0.5s^2+s+200}R(s)=\frac{0.5s^2+s}{0.5s^2+s+200}R(s) Er(s)=R(s)C(s)=R(s)0.5s2+s+200200R(s)=0.5s2+s+2000.5s2+sR(s)
根据误差定义,用终值定理求解系统的稳态误差,有:
e s s r ( ∞ ) = lim ⁡ s → 0 s E r ( s ) = lim ⁡ s → 0 s ⋅ 0.5 s 2 + s 0.5 s 2 + s + 200 ⋅ R ( s ) = lim ⁡ s → 0 s ⋅ 0.5 s 2 + s 0.5 s 2 + s + 200 ⋅ 1 s = 0 \begin{aligned} e_{ssr}(\infty)&=\lim_{s\to0}sE_r(s)=\lim_{s\to0}s·\frac{0.5s^2+s}{0.5s^2+s+200}·R(s)\\\\ &=\lim_{s\to0}s·\frac{0.5s^2+s}{0.5s^2+s+200}·\frac{1}{s}=0 \end{aligned} essr()=s0limsEr(s)=s0lims0.5s2+s+2000.5s2+sR(s)=s0lims0.5s2+s+2000.5s2+ss1=0
r ( t ) = 0 r(t)=0 r(t)=0时,系统的误差:
E n ( s ) = R ( s ) − C ( s ) = − 200 0.5 s 2 + s + 200 ⋅ N ( s ) E_n(s)=R(s)-C(s)=-\frac{200}{0.5s^2+s+200}·N(s) En(s)=R(s)C(s)=0.5s2+s+200200N(s)
根据误差定义,用终值定理求解系统的稳态误差,有:
e s s n ( ∞ ) = lim ⁡ s → 0 s E n ( s ) = lim ⁡ s → 0 [ − s ⋅ 200 0.5 s 2 + s + 200 ⋅ N ( s ) ] = − lim ⁡ s → 0 s ⋅ 200 0.5 s 2 + s + 200 ⋅ 0.1 s = − 0.1 \begin{aligned} e_{ssn}(\infty)&=\lim_{s\to0}sE_n(s)=\lim_{s\to0}\left[-s·\frac{200}{0.5s^2+s+200}·N(s)\right]\\\\ &=-\lim_{s\to0}s·\frac{200}{0.5s^2+s+200}·\frac{0.1}{s}=-0.1 \end{aligned} essn()=s0limsEn(s)=s0lim[s0.5s2+s+200200N(s)]=s0lims0.5s2+s+200200s0.1=0.1
则总的稳态误差为:
e s s ( ∞ ) = e s s r ( ∞ ) + e s s n ( ∞ ) = − 0.1 e_{ss}(\infty)=e_{ssr}(\infty)+e_{ssn}(\infty)=-0.1 ess()=essr()+essn()=0.1

Example 3.19

已知系统闭环传递函数为: Φ ( s ) = a 1 s + a 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 \Phi(s)=\displaystyle\frac{a_1s+a_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} Φ(s)=sn+an1sn1++a1s+a0a1s+a0,误差定义为: e ( t ) = r ( t ) − c ( t ) e(t)=r(t)-c(t) e(t)=r(t)c(t).求单位加速度函数输入时系统的稳态误差 e s s ( ∞ ) e_{ss}(\infty) ess().

解:

根据误差定义,可得:
E ( s ) = R ( s ) − C ( s ) = [ 1 − Φ ( s ) ] R ( s ) = s n + a n − 1 s n − 1 + ⋯ + a 2 s 2 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 ⋅ R ( s ) E(s)=R(s)-C(s)=[1-\Phi(s)]R(s)=\frac{s^n+a_{n-1}s^{n-1}+\cdots+a_2s^2}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0}·R(s) E(s)=R(s)C(s)=[1Φ(s)]R(s)=sn+an1sn1++a1s+a0sn+an1sn1++a2s2R(s)
单位加速度函数输入时, R ( s ) = 1 s 3 R(s)=\displaystyle\frac{1}{s^3} R(s)=s31.用终值定理求解系统的稳态误差,有:
e s s ( ∞ ) = lim ⁡ s → 0 s E ( s ) = lim ⁡ s → 0 s ⋅ s n + a n − 1 s n − 1 + ⋯ + a 2 s 2 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 ⋅ 1 s 3 = a 2 a 0 e_{ss}(\infty)=\lim_{s\to0}sE(s)=\lim_{s\to0}s·\frac{s^n+a_{n-1}s^{n-1}+\cdots+a_2s^2}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0}·\frac{1}{s^3}=\frac{a_2}{a_0} ess()=s0limsE(s)=s0limssn+an1sn1++a1s+a0sn+an1sn1++a2s2s31=a0a2
故单位加速度函数输入时系统的稳态误差为: e s s ( ∞ ) = a 2 a 0 e_{ss}(\infty)=\displaystyle\frac{a_2}{a_0} ess()=a0a2.

Example 3.20

控制系统如下图所示:
5
要求:

  1. 选择参数 K 1 K_1 K1 K t K_t Kt,使系统满足动态性能指标: σ % ≤ 20 % , t s ≤ 2 ( Δ = 5 % ) \sigma\%≤20\%,t_s≤2(\Delta=5\%) σ%20%ts2(Δ=5%)的要求;
  2. 求出系统的位置误差系数 K p K_p Kp、速度误差系数 K v K_v Kv和加速度误差系数 K a K_a Ka.

解:

  1. 选择参数 K 1 K_1 K1 K t K_t Kt.

    由图可得,系统的开环传递函数为:
    G ( s ) = K 1 s ( s + K 1 K t ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\frac{K_1}{s(s+K_1K_t)}=\frac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=s(s+K1Kt)K1=s(s+2ζωn)ωn2
    有:
    ω n = K 1 , ζ = 0.5 K t K 1 \omega_n=\sqrt{K_1},\zeta=0.5K_t\sqrt{K_1} ωn=K1 ζ=0.5KtK1
    由动态性能指标要求:
    t s = 3.5 ζ ω n ≤ ( Δ = 5 % ) , σ % = e − π ζ / 1 − ζ 2 × 100 % ≤ 20 % t_s=\frac{3.5}{\zeta\omega_n}≤(\Delta=5\%),\sigma\%={\rm e}^{-\pi\zeta/\sqrt{1-\zeta^2}}\times100\%≤20\% ts=ζωn3.5(Δ=5%)σ%=eπζ/1ζ2 ×100%20%
    解得:
    ω n ≥ 3.8 ⇒ ω n = 4.23 , ζ = 0.46 \omega_n≥3.8\Rightarrow\omega_n=4.23,\zeta=0.46 ωn3.8ωn=4.23ζ=0.46

    K 1 = 18.15 , K t = 0.216 K_1=18.15,K_t=0.216 K1=18.15Kt=0.216

  2. 确定静态误差系数。

    根据静态误差系数定义式可得:
    K p = lim ⁡ s → 0 G ( s ) H ( s ) = lim ⁡ s → 0 18.15 s ( s + 3.92 ) = ∞ K v = lim ⁡ s → 0 s ⋅ G ( s ) H ( s ) = lim ⁡ s → 0 s ⋅ 18.15 s ( s + 3.92 ) = 4.63 K a = lim ⁡ s → 0 s 2 ⋅ G ( s ) H ( s ) = lim ⁡ s → 0 s 2 ⋅ 18.15 s ( s + 3.92 ) = 0 \begin{aligned} &K_p=\lim_{s\to0}G(s)H(s)=\lim_{s\to0}\displaystyle\frac{18.15}{s(s+3.92)}=\infty\\\\ &K_v=\lim_{s\to0}s·G(s)H(s)=\lim_{s\to0}s·\frac{18.15}{s(s+3.92)}=4.63\\\\ &K_a=\lim_{s\to0}s^2·G(s)H(s)=\lim_{s\to0}s^2·\frac{18.15}{s(s+3.92)}=0 \end{aligned} Kp=s0limG(s)H(s)=s0lims(s+3.92)18.15=Kv=s0limsG(s)H(s)=s0limss(s+3.92)18.15=4.63Ka=s0lims2G(s)H(s)=s0lims2s(s+3.92)18.15=0

  3. 控制系统单位阶跃响应。
    6

猜你喜欢

转载自blog.csdn.net/qq_39032096/article/details/127432507
今日推荐