Python机器视觉--OpenCV进阶(核心)--图像轮廓的多边形逼近与凸包,外接矩形

1.图像轮廓的多边形逼近与凸包

1.1 多边形逼近

findContours后的轮廓信息contours可能过于复杂不平滑,可以用approxPolyDP函数对该多边形曲线做适当近似,这就是轮廓的多边形逼近.

apporxPolyDP就是以多边形去逼近轮廓,采用的是Douglas-Peucker算法(方法名中的DP)

该函数采用是道格拉斯-普克算法(Douglas-Peucker)算法来实现。该算法也以Douglas-Peucker算法和迭代终点拟合算法为名。算法的目的是给出由线段组成的曲线(在某些上下文中也称为折线),以找到具有较少点的相似曲线。 该算法基于原始曲线和简化曲线(即曲线之间的豪斯多夫距离)之间的最大距离定义“不相似”。 简化曲线由定义原始曲线的点的子集组成。

算法描述如下:

起始曲线是有序的一组点或线,距离维度ε> 0。该算法递归地划分线。 最初给出了第一点和最后一点之间的所有点。 它会自动标记要保存的第一个和最后一个点。 然后找到距离第一点和最后一点组成的线段的最远的点作为终点; 这一点在距离终点之间的近似线段的曲线上显然最远。 如果该点比线段更接近于ε,那么当前未被标记的任何点将被保存,而没有简化的曲线比ε更差的可以丢弃。

如果离线段最远的点距离近似值大于ε,则必须保留该点。 该算法以第一个点和最远点递归地调用自身,然后以最远点和最后一个点(包括最远点被标记为保留)递归调用自身。
当递归完成时,可以生成一个新的输出曲线,其中包括所有且仅标记为保留的点。

DP算法原理比较简单,核心就是不断找多边形最远的点加入形成新的多边形,直到最短距离小于指定的精度。

  • approxPolyDP(curve, epsilon, closed[, approxCurve])

    • curve 要近似逼近的轮廓
    • epsilon 即DP算法使用的阈值
    • closed轮廓是否闭合

    代码实现

import cv2
import numpy as np


img = cv2.imread('./hand.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)
# 展示没有进行多边形逼近之前的轮廓


# 进行多边形逼近, 返回的是多边形上一系列的点, 即多边形逼近之后的轮廓
approx = cv2.approxPolyDP(contours[0], 20, True)
# print(type(approx))
# print(approx)
# print('--------------------------------------')
# print(contours[0])

# 把多边形逼近的轮廓画出来.
cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)
cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

效果如图

在这里插入图片描述

1.2 图像轮廓的凸包

逼近多边形是轮廓的高度近似,但是有时候,我们希望使用一个多边形的凸包来简化它。凸包跟逼近多边形很像,只不过它是物体最外层的凸多边形。凸包指的是完全包含原有轮廓,并且仅由轮廓上的点所构成的多边形。凸包的每一处都是凸的,即在凸包内连接任意两点的直线都在凸包的内部。在凸包内,任意连续三个点的内角小于180°。

  • convexHull(points[, hull[, clockwise[, returnPoints]]])

    • points 即轮廓
    • colckwise 顺时针绘制

####代码实现

import cv2
import numpy as np


img = cv2.imread('./hand.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化, 注意有2个返回值, 阈值和结果
ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)


# 轮廓查找, 新版本返回两个结果, 轮廓和层级, 老版本返回3个参数, 图像, 轮廓和层级
result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓, 注意, 绘制轮廓会改变原图
cv2.drawContours(img, contours, 0, (0, 0, 255), 2)


# 进行多边形逼近, 返回的是多边形上一系列的点, 即多边形逼近之后的轮廓
approx = cv2.approxPolyDP(contours[0], 20, True)

# 把多边形逼近的轮廓画出来.
cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)


# 计算凸包
hull = cv2.convexHull(contours[0])
cv2.drawContours(img, [hull], 0, (255, 0, 0), 2)

cv2.imshow('img', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

效果如图(蓝色轮廓)

在这里插入图片描述

2.外接矩形

外接矩形分为最小外接矩形和最大外接矩形.

下图中红色矩形是最小外接矩形, 绿色矩形为最大外接矩形.

在这里插入图片描述

  • minAreaRect(points) 最小外接矩阵

    • points 即为轮廓
    • 返回元组, 内容是一个旋转矩形(RotatedRect)的参数: 矩形的起始坐标x,y, 矩形的宽度和高度, 矩形的选择角度.
  • boundingRect(points) 最大外接矩阵

    • points 即为轮廓

代码实现

import cv2
import numpy as np


img = cv2.imread('./hello.jpeg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)

result, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 最外面的轮廓是整个图像, contours[1]表示图像里面的图形轮廓
# 注意返回的内容是一个旋转的矩形, 包含矩形的起始坐标, 宽高和选择角度
(x, y), (w, h), angle = cv2.minAreaRect(contours[1])

print(x, y)
print(w, h)
print(angle)
r = cv2.minAreaRect(contours[1])

# 快速把rotatedrect转化为轮廓数据
box = cv2.boxPoints(r)
print(box)
# 轮廓必须是整数, 不能是小数, 所以转化为整数
box = np.round(box).astype('int64')
print(box)
# 绘制最小外接矩形
cv2.drawContours(img, [box], 0, (255, 0, 0), 2)

# 返回矩形的x,y和w,h
x,y, w, h = cv2.boundingRect(contours[1])
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

效果如图

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_43944517/article/details/126813274