windows下编译mxnet并使用C++接口开发

大多数情况下,mxnet都使用python接口进行机器学习程序的编写,方便快捷,但是有的时候,需要把机器学习训练和识别的程序部署到生产版的程序中去,比如游戏或者云服务,此时采用C++等高级语言去编写才能提高性能,本文介绍了如何在windows系统下从源码编译mxnet,安装python版的包,并使用C++原生接口创建示例程序。


目标

  • 编译出libmxnet.lib和libmxnet.dll的gpu版本
  • 从源码安装mxnet python包
  • 构建mxnet C++示例程序

环境

  • windows10
  • vs2015
  • cmake3.7.2
  • Miniconda2(python2.7.14)
  • CUDA8.0
  • mxnet1.2
  • opencv3.4.1
  • OpenBLAS-v0.2.19-Win64-int32
  • cudnn-8.0-windows10-x64-v7.1(如果编译cpu版本的mxnet,则此项不需要)

步骤

下载源码

最好用git下载,递归地下载所有依赖的子repo,源码的根目录为mxnet

git clone --recursive https://github.com/dmlc/mxnet 

依赖库

在此之前确保cmake和python已经正常安装,并且添加到环境变量,然后再下载第三方依赖库

cmake配置

打开cmake-gui,配置源码目录和生成目录,编译器选择vs2015 win64



配置第三方依赖库





configure和generate



编译vs工程

打开mxnet.sln,配置成release x64模式,编译整个solution


编译完成后会在对应文件夹生成mxnet的lib和dll


此时整个过程成功了一半


安装mxnet的python包

有了libmxnet.dll就可以同源码安装python版的mxnet包了

不过,前提是需要集齐所有依赖到的其他dll,如图所示,将这些dll全部拷贝到mxnet/python/mxnet目录下


tip: 关于dll的来源

  • opencv,openblas,cudnn相关dll都是从这几个库的目录里拷过来的
  • libgcc_s_seh-1.dll和libwinpthread-1.dll是从mingw相关的库目录里拷过来的,git,qt等这些目录都有
  • libgfortran-3.dll和libquadmath_64-0.dll是从adda(https://github.com/adda-team/adda/releases)这个库里拷过来的,注意改名

然后,在mxnet/python目录下使用命令行安装mxnet的python包

python setup.py install


安装过程中,python会自动把对应的dll考到安装目录,正常安装完成后,在python中就可以 import mxnet 了

生成C++依赖头文件

为了能够使用C++原生接口,这一步是很关键的一步,目的是生成mxnet C++程序依赖的op.h文件

在mxnet/cpp-package/scripts目录,将所有依赖到的dll拷贝进来


在此目录运行命令行

python OpWrapperGenerator.py libmxnet.dll


正常情况下就可以在mxnet/cpp-package/include/mxnet-cpp目录下生成op.h了


如果这个过程中出现一些error,多半是dll文件缺失或者版本不对,很好解决

构建C++示例程序

建立cpp工程,这里使用经典的mnist手写数字识别示例(请提前下载好mnist数据,地址:mnist

选择release x64模式


配置include和lib目录以及附加依赖项



include目录包括:

  • D:\mxnet\include
  • D:\mxnet\dmlc-core\include
  • D:\mxnet\nnvm\include
  • D:\mxnet\cpp-package\include

lib目录:

  • D:\mxnet\build_x64\Release

附加依赖项:

  • libmxnet.lib

代码 main.cpp

#include <chrono>
#include "mxnet-cpp/MxNetCpp.h"

using namespace std;
using namespace mxnet::cpp;

Symbol mlp(const vector<int> &layers)
{
	auto x = Symbol::Variable("X");
	auto label = Symbol::Variable("label");

	vector<Symbol> weights(layers.size());
	vector<Symbol> biases(layers.size());
	vector<Symbol> outputs(layers.size());

	for (size_t i = 0; i < layers.size(); ++i)
	{
		weights[i] = Symbol::Variable("w" + to_string(i));
		biases[i] = Symbol::Variable("b" + to_string(i));
		Symbol fc = FullyConnected(
			i == 0 ? x : outputs[i - 1],  // data
			weights[i],
			biases[i],
			layers[i]);
		outputs[i] = i == layers.size() - 1 ? fc : Activation(fc, ActivationActType::kRelu);
	}

	return SoftmaxOutput(outputs.back(), label);
}

int main(int argc, char** argv)
{
	const int image_size = 28;
	const vector<int> layers{128, 64, 10};
	const int batch_size = 100;
	const int max_epoch = 10;
	const float learning_rate = 0.1;
	const float weight_decay = 1e-2;

	auto train_iter = MXDataIter("MNISTIter")
		.SetParam("image", "./mnist_data/train-images.idx3-ubyte")
		.SetParam("label", "./mnist_data/train-labels.idx1-ubyte")
		.SetParam("batch_size", batch_size)
		.SetParam("flat", 1)
		.CreateDataIter();
	auto val_iter = MXDataIter("MNISTIter")
		.SetParam("image", "./mnist_data/t10k-images.idx3-ubyte")
		.SetParam("label", "./mnist_data/t10k-labels.idx1-ubyte")
		.SetParam("batch_size", batch_size)
		.SetParam("flat", 1)
		.CreateDataIter();

	auto net = mlp(layers);

	// start traning
	cout << "==== mlp training begin ====" << endl;

	auto start_time = chrono::system_clock::now();

	//Context ctx = Context::cpu();
	Context ctx = Context::gpu();  // Use GPU for training

	std::map<string, NDArray> args;
	args["X"] = NDArray(Shape(batch_size, image_size*image_size), ctx);
	args["label"] = NDArray(Shape(batch_size), ctx);
	// Let MXNet infer shapes of other parameters such as weights
	net.InferArgsMap(ctx, &args, args);

	// Initialize all parameters with uniform distribution U(-0.01, 0.01)
	auto initializer = Uniform(0.01);
	for (auto& arg : args)
	{
		// arg.first is parameter name, and arg.second is the value
		initializer(arg.first, &arg.second);
	}

	// Create sgd optimizer
	Optimizer* opt = OptimizerRegistry::Find("sgd");
	opt->SetParam("rescale_grad", 1.0 / batch_size)
		->SetParam("lr", learning_rate)
		->SetParam("wd", weight_decay);
	std::unique_ptr<LRScheduler> lr_sch(new FactorScheduler(5000, 0.1));
	opt->SetLRScheduler(std::move(lr_sch));

	// Create executor by binding parameters to the model
	auto *exec = net.SimpleBind(ctx, args);
	auto arg_names = net.ListArguments();

	// Create metrics
	Accuracy train_acc, val_acc;

	// Start training
	for (int iter = 0; iter < max_epoch; ++iter)
	{
		int samples = 0;
		train_iter.Reset();
		train_acc.Reset();

		auto tic = chrono::system_clock::now();
		while (train_iter.Next())
		{
			samples += batch_size;
			auto data_batch = train_iter.GetDataBatch();
			// Data provided by DataIter are stored in memory, should be copied to GPU first.
			data_batch.data.CopyTo(&args["X"]);
			data_batch.label.CopyTo(&args["label"]);
			// CopyTo is imperative, need to wait for it to complete.
			NDArray::WaitAll();

			// Compute gradients
			exec->Forward(true);
			exec->Backward();

			// Update parameters
			for (size_t i = 0; i < arg_names.size(); ++i)
			{
				if (arg_names[i] == "X" || arg_names[i] == "label") continue;
				opt->Update(i, exec->arg_arrays[i], exec->grad_arrays[i]);
			}
			// Update metric
			train_acc.Update(data_batch.label, exec->outputs[0]);
		}
		// one epoch of training is finished
		auto toc = chrono::system_clock::now();
		float duration = chrono::duration_cast<chrono::milliseconds>(toc - tic).count() / 1000.0;
		LG << "Epoch[" << iter << "] " << samples / duration \
			<< " samples/sec " << "Train-Accuracy=" << train_acc.Get();;

		val_iter.Reset();
		val_acc.Reset();
		while (val_iter.Next())
		{
			auto data_batch = val_iter.GetDataBatch();
			data_batch.data.CopyTo(&args["X"]);
			data_batch.label.CopyTo(&args["label"]);
			NDArray::WaitAll();

			// Only forward pass is enough as no gradient is needed when evaluating
			exec->Forward(false);
			val_acc.Update(data_batch.label, exec->outputs[0]);
		}
		LG << "Epoch[" << iter << "] Val-Accuracy=" << val_acc.Get();
	}

	// end training
	auto end_time = chrono::system_clock::now();
	float total_duration = chrono::duration_cast<chrono::milliseconds>(end_time - start_time).count() / 1000.0;
	cout << "total duration: " << total_duration << " s" << endl;

	cout << "==== mlp training end ====" << endl;

	//delete exec;
	MXNotifyShutdown();

	getchar(); // wait here
	return 0;
}

编译生成目录

  • 预先把mnist数据拷进去,维持相对目录结构
  • 在执行目录也要把所有依赖的dll拷贝进来



运行结果


可以看出,在数据量小的情况下,gpu版本并不明显比cpu版本消耗的训练时间少

至此,大功告成

猜你喜欢

转载自blog.csdn.net/u012234115/article/details/80503086