基于视频分析 Mobilenetv2 网络结构

Mobilenetv2 中使用的的激活函数是ReLU6,采用InvertedResidual残差网络,其特征表达能力优于传统的残差网络,总共计算有10次残差计算。

其中,网络中把普通的卷积分为depth-wise的卷积核point-wise的卷积可以大大的减少计算量。

1.ReLU6

 ReLU6(x)=min(max(0,x),6) 

   ReLU6(x) =0    x < 0 

   ReLU6(x) =x    6>x>0 

   ReLU6(x) =6    x>6 

图像如下:

扫描二维码关注公众号,回复: 13489224 查看本文章

其核心如下图: 开头将深度变到32,结尾将深度变到1280 ,中间进行残差卷积(InvertedResidual

图中的 t :代表 膨胀率,为 1 时不膨胀,不为1时进行膨胀

           c :  代表卷积维度 ,n:代表 这一层有多少个 残差结构 ,s:代表步长

网络结构之特征提取(features)

(0)首先进行一个 3x32 的三维卷积 ,步长为(1,2,2),对时间维度不进行缩减

(features): Sequential(
      (0): Sequential(
        (0): Conv3d(3, 32, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
        (1): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU6(inplace=True)
      )           

(1)其实是InvertedResidual残差:共有17个 这种残差机构。

(a)图为传统的残差结构 ,先用1x1卷积将输入的feature map的维度降低,然后进行3x3的卷积操作,最后再用1x1的卷积将维度变大。

(b)图为InvertedResidual结构,先用1x1卷积将输入的feature map维度变大,然后用3x3 depthwise convolution方式做卷积运算,最后使用1x1的卷积运算将其维度缩小。注意,此时的1x1卷积运算后,不再使用ReLU激活函数,而是使用线性激活函数,以保留更多特征信息,保证模型的表达能力。

MobilenetV2  也不是所有结构都使用这种残差网络,只有满足 ,步长为1,且卷积输入,输出的维度相同,使用 InvertedResidual 残差网络,共有10次

self.use_res_connect = self.stride == (1,1,1) and inp == oup

2.其整体网络结构

3.整体代码

'''MobilenetV2 in PyTorch.

See the paper "MobileNetV2: Inverted Residuals and Linear Bottlenecks" for more details.
'''
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable




def conv_bn(inp, oup, stride):
    return nn.Sequential(
        nn.Conv3d(inp, oup, kernel_size=3, stride=stride, padding=(1,1,1), bias=False),
        nn.BatchNorm3d(oup),
        nn.ReLU6(inplace=True)
    )


def conv_1x1x1_bn(inp, oup):
    return nn.Sequential(
        nn.Conv3d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm3d(oup),
        nn.ReLU6(inplace=True)
    )


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride

        hidden_dim = round(inp * expand_ratio)
        self.use_res_connect = self.stride == (1,1,1) and inp == oup

        if expand_ratio == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv3d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm3d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv3d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm3d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv3d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm3d(hidden_dim),
                nn.ReLU6(inplace=True),
                # dw
                nn.Conv3d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm3d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv3d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm3d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:  # 步长为1,且卷积维度相同
            #print('c')  #出现19次
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(self, num_classes=3, sample_size=224, width_mult=1.):
        super(MobileNetV2, self).__init__()
        block = InvertedResidual
        input_channel = 32
        last_channel = 1280
        interverted_residual_setting = [
            # t, c, n, s
            [1,  16, 1, (1,1,1)],
            [6,  24, 2, (2,2,2)],
            [6,  32, 3, (2,2,2)],
            [6,  64, 4, (2,2,2)],
            [6,  96, 3, (1,1,1)],
            [6, 160, 3, (2,2,2)],
            [6, 320, 1, (1,1,1)],
        ]

        # building first layer
        assert sample_size % 16 == 0.
        input_channel = int(input_channel * width_mult)
        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
        self.features = [conv_bn(3, input_channel, (1,2,2))]
        # building inverted residual blocks
        for t, c, n, s in interverted_residual_setting:  #[1,  16, 1, (1,1,1)],
            output_channel = int(c * width_mult)         #[6,  24, 2, (2,2,2)],
            for i in range(n):
                stride = s if i == 0 else (1,1,1)
                self.features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
        # building last several layers
        self.features.append(conv_1x1x1_bn(input_channel, self.last_channel))
        # make it nn.Sequential
        self.features = nn.Sequential(*self.features)

        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(self.last_channel, num_classes),
        )

        self._initialize_weights()

    def forward(self, x):
        #print(x.shape)
        x = self.features(x)
        #print(x.shape)
        x = F.avg_pool3d(x, x.data.size()[-3:])
        #print(x.shape)
        x = x.view(x.size(0), -1)
        #print(x.shape)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.kernel_size[2] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm3d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()


def get_fine_tuning_parameters(model, ft_portion):
    if ft_portion == "complete":
        return model.parameters()

    elif ft_portion == "last_layer":
        ft_module_names = []
        ft_module_names.append('classifier')

        parameters = []
        for k, v in model.named_parameters():
            for ft_module in ft_module_names:
                if ft_module in k:
                    parameters.append({'params': v})
                    break
            else:
                parameters.append({'params': v, 'lr': 0.0})
        return parameters

    else:
        raise ValueError("Unsupported ft_portion: 'complete' or 'last_layer' expected")

    
def get_model(**kwargs):
    """
    Returns the model.
    """
    model = MobileNetV2(**kwargs)
    return model


if __name__ == "__main__":
    model = get_model(num_classes=3, sample_size=112, width_mult=1.)
    model = model.cuda()
    model = nn.DataParallel(model, device_ids=None)
    print(model)


    input_var = Variable(torch.randn(8, 3, 16, 112, 112))
    output = model(input_var)
    print(output.shape)


猜你喜欢

转载自blog.csdn.net/abc123mma/article/details/113376472