人工智能学习:python实现宽度优先搜索算法

人工智能学习:python实现宽度优先搜索算法


本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明.

 

环境:

主机:WIN10

python版本:3.5

开发环境:pyCharm


说明:
学习《人工智能 一种现代方法》编写宽度优先算法。
书中算法源码:



算法流程分析:

数据结构:

  • frontier:边缘。存储未扩展的节点
  • explored:探索集。存储的是状态(注意,这个之前的算法有区别)

流程:

  • 如果边缘为空,则返回失败。操作:EMPTY?(frontier)
  • 否则从边缘中选择一个叶子节点。操作:POP(frontier)
  • 将叶子节点的状态放在探索集
  • 遍历叶子节点的所有动作
    • 每个动作产生子节点
    • 如果子节点的状态不在探索集或者边缘,则目标测试:通过返回
    • 失败则放入边缘。操作:INSERT(child, frontier)

 

注意:算法中只有在遍历叶子节点所有动作,即宽度搜索之前,才将叶子节点的状态放入到探索集。在遍历过程中,如果子节点没有通过目标测试,并没有将子节点的状态放入探索集,而是将子节点放在边缘中,准备下一轮基于本子节点的宽度遍历。

 

 

算法性能分析:

  • 完备的
  • 不是最优的
  • 时间复杂度:

假设每个状态都有b个后继,解的深度为d,则节点总数:

b + b^2 + b^3 + … + b^d = O(b^d)

以上算法是在扩展节点时而不是生成时进行目标检测,所以时间复杂度应该是O(b^(d+1))

  • 空间复杂度:

每个已扩展的节点都保存到探索集,探索集的节点数:O(b(d - 1)),边缘节点中:O(b^d)。所以控件复杂度为O(b^d),由边缘集所决定。

 




城市地图:




源码:

import pandas as pd
from pandas import Series, DataFrame

# 城市信息:city1 city2 path_cost
_city_info = None

# 按照路径消耗进行排序的FIFO,低路径消耗在前面
_frontier_priority = []


# 节点数据结构
class Node:
    def __init__(self, state, parent, action, path_cost):
        self.state = state
        self.parent = parent
        self.action = action
        self.path_cost = path_cost


def main():
    global _city_info
    import_city_info()

    while True:
        src_city = input('input src city\n')
        dst_city = input('input dst city\n')
        result = breadth_first_search(src_city, dst_city)
        if not result:
            print('from city: %s to city %s search failure' % (src_city, dst_city))
        else:
            print('from city: %s to city %s search success' % (src_city, dst_city))
            path = []
            while True:
                path.append(result.state)
                if result.parent is None:
                    break
                result = result.parent
            size = len(path)
            for i in range(size):
                if i < size - 1:
                    print('%s->' % path.pop(), end='')
                else:
                    print(path.pop())


def import_city_info():
    global _city_info
    data = [{'city1': 'Oradea', 'city2': 'Zerind', 'path_cost': 71},
            {'city1': 'Oradea', 'city2': 'Sibiu', 'path_cost': 151},
            {'city1': 'Zerind', 'city2': 'Arad', 'path_cost': 75},
            {'city1': 'Arad', 'city2': 'Sibiu', 'path_cost': 140},
            {'city1': 'Arad', 'city2': 'Timisoara', 'path_cost': 118},
            {'city1': 'Timisoara', 'city2': 'Lugoj', 'path_cost': 111},
            {'city1': 'Lugoj', 'city2': 'Mehadia', 'path_cost': 70},
            {'city1': 'Mehadia', 'city2': 'Drobeta', 'path_cost': 75},
            {'city1': 'Drobeta', 'city2': 'Craiova', 'path_cost': 120},
            {'city1': 'Sibiu', 'city2': 'Fagaras', 'path_cost': 99},
            {'city1': 'Sibiu', 'city2': 'Rimnicu Vilcea', 'path_cost': 80},
            {'city1': 'Rimnicu Vilcea', 'city2': 'Craiova', 'path_cost': 146},
            {'city1': 'Rimnicu Vilcea', 'city2': 'Pitesti', 'path_cost': 97},
            {'city1': 'Craiova', 'city2': 'Pitesti', 'path_cost': 138},
            {'city1': 'Fagaras', 'city2': 'Bucharest', 'path_cost': 211},
            {'city1': 'Pitesti', 'city2': 'Bucharest', 'path_cost': 101},
            {'city1': 'Bucharest', 'city2': 'Giurgiu', 'path_cost': 90},
            {'city1': 'Bucharest', 'city2': 'Urziceni', 'path_cost': 85},
            {'city1': 'Urziceni', 'city2': 'Vaslui', 'path_cost': 142},
            {'city1': 'Urziceni', 'city2': 'Hirsova', 'path_cost': 98},
            {'city1': 'Neamt', 'city2': 'Iasi', 'path_cost': 87},
            {'city1': 'Iasi', 'city2': 'Vaslui', 'path_cost': 92},
            {'city1': 'Hirsova', 'city2': 'Eforie', 'path_cost': 86}]

    _city_info = DataFrame(data, columns=['city1', 'city2', 'path_cost'])
    # print(_city_info)


def breadth_first_search(src_state, dst_state):
    global _city_info

    node = Node(src_state, None, None, 0)
    # 目标测试
    if node.state == dst_state:
        return node
    frontier = [node]
    explored = []

    while True:
        if len(frontier) == 0:
            return False
        node = frontier.pop(0)
        explored.append(node.state)
        if node.parent is not None:
            print('deal node:state:%s\tparent state:%s\tpath cost:%d' % (node.state, node.parent.state, node.path_cost))
        else:
            print('deal node:state:%s\tparent state:%s\tpath cost:%d' % (node.state, None, node.path_cost))

        # 遍历子节点
        for i in range(len(_city_info)):
            dst_city = ''
            if _city_info['city1'][i] == node.state:
                dst_city = _city_info['city2'][i]
            elif _city_info['city2'][i] == node.state:
                dst_city = _city_info['city1'][i]
            if dst_city == '':
                continue
            child = Node(dst_city, node, 'go', node.path_cost + _city_info['path_cost'][i])
            print('\tchild node:state:%s path cost:%d' % (child.state, child.path_cost))
            if child.state not in explored and not is_node_in_frontier(frontier, child):
                # 目标测试
                if child.state == dst_state:
                    print('\t\t this child is goal!')
                    return child
                frontier.append(child)
                print('\t\t add child to child')


def is_node_in_frontier(frontier, node):
    for x in frontier:
        if node.state == x.state:
            return True
    return False


if __name__ == '__main__':
    main()




 
     
 
     
利用算法求解:
input src city
Zerind
input dst city
Urziceni
deal node:state:Zerind parent state:None path cost:0
 child node:state:Oradea path cost:71
   add child to child
 child node:state:Arad path cost:75
   add child to child
deal node:state:Oradea parent state:Zerind path cost:71
 child node:state:Zerind path cost:142
 child node:state:Sibiu path cost:222
   add child to child
deal node:state:Arad parent state:Zerind path cost:75
 child node:state:Zerind path cost:150
 child node:state:Sibiu path cost:215
 child node:state:Timisoara path cost:193
   add child to child
deal node:state:Sibiu parent state:Oradea path cost:222
 child node:state:Oradea path cost:373
 child node:state:Arad path cost:362
 child node:state:Fagaras path cost:321
   add child to child
 child node:state:Rimnicu Vilcea path cost:302
   add child to child
deal node:state:Timisoara parent state:Arad path cost:193
 child node:state:Arad path cost:311
 child node:state:Lugoj path cost:304
   add child to child
deal node:state:Fagaras parent state:Sibiu path cost:321
 child node:state:Sibiu path cost:420
 child node:state:Bucharest path cost:532
   add child to child
deal node:state:Rimnicu Vilcea parent state:Sibiu path cost:302
 child node:state:Sibiu path cost:382
 child node:state:Craiova path cost:448
   add child to child
 child node:state:Pitesti path cost:399
   add child to child
deal node:state:Lugoj parent state:Timisoara path cost:304
 child node:state:Timisoara path cost:415
 child node:state:Mehadia path cost:374
   add child to child
deal node:state:Bucharest parent state:Fagaras path cost:532
 child node:state:Fagaras path cost:743
 child node:state:Pitesti path cost:633
 child node:state:Giurgiu path cost:622
   add child to child
 child node:state:Urziceni path cost:617
   this child is goal!
from city: Zerind to city Urziceni search success
Zerind->Oradea->Sibiu->Fagaras->Bucharest->Urziceni

从Zerind到Urziceni的最优路径应该是Zerind->Arad->Sibiu->Rimnicu Vilcea->Pitesti->Bucharest->Urziceni,所以本算法不是最优算法,只是一个解。


参考书目:

1.《人工智能 一种现代方法》





猜你喜欢

转载自blog.csdn.net/jdh99/article/details/80851261