【深度学习】L1W2(2)- 用神经网络思想实现Logistic回归

作业

你需要记住的内容:
预处理数据集的常见步骤是:

  • 找出数据的尺寸维度(m_train,m_test,num_px等)(图片都是lenght,height,3)
  • 重塑数据集,以使每个示例都是大小为(num_px \ num_px \ 3,1)的向量(就是利用reshape函数)
  • “标准化”数据(这里就是简单的将每张图片除以255)

以下是logistic回归的代码,判断图片是否为猫

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def initialize_with_zeros(dim):
    w = np.zeros((dim, 1))
    b = 0
    assert (w.shape == (dim, 1))
    assert (isinstance(b, float) or isinstance(b, int))
    # 断言用于判断是否为这个条件,不是的话就直接报错,是的话就继续执行
    # 这里断言可有可无,保险起见而已
    return w, b


# 实现函数propagate()来计算损失函数及其梯度。
def propagate(w, b, X, Y):
    """
       Implement the cost function and its gradient for the propagation explained above

       Arguments:
       w -- weights, a numpy array of size (num_px * num_px * 3, 1)
       b -- bias, a scalar
       X -- data of size (num_px * num_px * 3, number of examples)
       Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
   """
    m = X.shape[1]
    A = sigmoid(np.dot(w.T, X) + b)  # compute activation
    cost = -1 / m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))  # compute cost

    dw = 1 / m * np.dot(X, (A - Y).T)
    db = 1 / m * np.sum(A - Y)

    assert (dw.shape == w.shape)
    assert (db.dtype == float)

    cost = np.squeeze(cost)  # 这句可要可不要

    assert (cost.shape == ())

    grads = {
    
    "dw": dw,
             "db": db}

    return grads, cost


def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    costs = []

    for i in range(num_iterations):
        grads, cost = propagate(w, b, X, Y)

        dw = grads["dw"]
        db = grads["db"]

        w = w - learning_rate * dw
        b = b - learning_rate * db

        if i % 100 == 0:
            costs.append(cost)

        # Print the cost every 100 training examples
        if print_cost and i % 100 == 0:
            print("Cost after iteration %i: %f" % (i, cost))

    params = {
    
    "w": w,
              "b": b}

    grads = {
    
    "dw": dw,
             "db": db}

    return params, grads, costs

def predict(w, b, X):
    m = X.shape[1]
    Y_prediction = np.zeros((1, m))

    w = w.reshape(X.shape[0], 1) # 这句其实没起作用 w还是原来的w

    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    ### START CODE HERE ### (≈ 1 line of code)
    A = sigmoid(np.dot(w.T, X) + b)
    ### END CODE HERE ###

    for i in range(A.shape[1]):

        # Convert probabilities A[0,i] to actual predictions p[0,i]
        ### START CODE HERE ### (≈ 4 lines of code)
        if A[0, i] <= 0.5:
            Y_prediction[0, i] = 0
        else:
            Y_prediction[0, i] = 1
        ### END CODE HERE ###

    assert (Y_prediction.shape == (1, m))

    return Y_prediction


def model(X_train, Y_train, X_test, Y_test, num_iterations, learning_rate, print_cost):
    w, b = initialize_with_zeros(X_train.shape[0])
    # Gradient descent (≈ 1 line of code)
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)

    # Retrieve parameters w and b from dictionary "parameters"
    w = parameters["w"]
    b = parameters["b"]

    # Predict test/train set examples (≈ 2 lines of code)
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)

    ### END CODE HERE ###

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    d = {
    
    "costs": costs,
         "Y_prediction_test": Y_prediction_test,
         "Y_prediction_train": Y_prediction_train,
         "w": w,
         "b": b,
         "learning_rate": learning_rate,
         "num_iterations": num_iterations}

    return d


train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()


# index = 49
# plt.imshow(test_set_x_orig[index])
# plt.show()


# train_set_x_flatten = train_set_x_orig.reshape(64*64*3, 209) 等价于下方的
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.


d = model(train_set_x, train_set_y, test_set_x, test_set_y, 2000, 0.005, True)

猜你喜欢

转载自blog.csdn.net/qq_43567222/article/details/114680374
今日推荐