利用挤出生物3D打印技术打印宏-微-纳米多孔水凝胶支架

传统的可注射水凝胶用作组织缺损填充物时,所形成的块状凝胶高分子网络较为致密,通常仅含有纳米级别孔,这限制了所包载细胞的生长空间及营养传输。此外,过于致密的凝胶网络结构也不利于机体组织的融合。

将活细胞封装在以甲基丙烯酰明胶(GelMA)为基础的多孔生物墨水中,通过挤出生物3D打印技术制造宏-微-纳米多孔水凝胶支架,然后将图案化的水凝胶支架注射到组织缺损部位进行修复。结果表明,这种独特的3D打印的多孔凝胶结构在微创组织再生和细胞治疗领域具有广阔的应用前景。

首先,室温下以体积比混合含有细胞的GelMA预凝胶溶液与PEO溶液制备双水相生物墨水,利用挤出生物3D打印技术打印所需载细胞水凝胶结构,光交联后使用商业的经皮针在体外或体内注射。微米孔:GelMA水凝胶网络所包含的孔;微米孔:将支架浸泡在PBS中去除GelMA相中的PEO以产生相互连接的微孔宏观孔:直接3D挤出生物打印肉眼可见的孔。


其次,对水凝胶结构进行表征,展示了不同配方水两相生物墨水的打印及微观结构,并指出通过调整PEO体积分数和混合时间调节孔隙率;通过微-纳米多孔水凝胶结构的可逆性测试证明微孔水凝胶结构具有允许微创注射的潜力(图2)。
接着,验证了多级孔水凝胶结构的压缩性和可注射性。标准水凝胶结构在压缩及注射后不能恢复且不能保持结构完整性(动画1,2),而微-纳米孔水凝胶结构在应变水平上不受机械压缩的影响(图3)。采用14G针将不同模式的微孔水凝胶结构体注射到猪组织缺陷中,证明了3D打印微-纳米孔水凝胶在体外的可注射性和形状记忆特性(图4,动画2,3,4)。

接着,验证了多级孔水凝胶结构的压缩性和可注射性。标准水凝胶结构在压缩及注射后不能恢复且不能保持结构完整性(动画1,2),而微-纳米孔水凝胶结构在应变水平上不受机械压缩的影响(图3)。采用14G针将不同模式的微孔水凝胶结构体注射到猪组织缺陷中,证明了3D打印微-纳米孔水凝胶在体外的可注射性和形状记忆特性(图4,动画2,3,4)。

最后,对水凝胶结构进行了体内外生物学评估,一方面证明微-纳米多孔水凝胶经过机械压缩或注射过程后,对hMSCs的生存、增殖和扩散能力以及hMSC成脂、成骨能力并没有影响(图5);另一方面,3D打印的水凝胶结构可以有效地填补组织的缺损,标准水凝胶会限制组织浸润,而多孔水凝胶中相互连通微孔结构为组织的生长提供了足够的空间,易与组织融合,促进修复(图6)。

3D生物打印提供了一个通用的平台提供定制化水凝胶结构,有效匹配缺陷部位。相互连接的微孔不仅使得所构建的水凝胶在压缩后和注入后均保持了原有的结构和功能特征,而且还允许hMSC增殖、迁移和分化。此外,具有形状记忆特性的可注射水凝胶具有可生物降解性,有利于组织融合。

苯基-2,4,6-三甲基苯甲酰基膦酸锂(LAP)
甲基丙烯酰化明胶(GelMA)
甲基丙烯酰化透明质酸(HAMA)
甲基丙烯酰化硫酸软骨素(CSMA)
甲基丙烯酰化海藻酸纳(ALMA)
甲基丙烯酰化羧甲基壳聚糖(CMCSMA)
甲基丙烯酰化丝素蛋白(FibMA)
甲基丙烯酰化Ⅰ型胶原(Col1MA)
甲基丙烯酰化弹性蛋白(ElaMA)
甲基丙烯酰化肝素(HepMA)
猪源Ⅰ型胶原(ColI)
猪源弹性蛋白(Elastin)
关节软骨生物墨水
纤维软骨生物墨水
弹力软骨生物墨水
悬浮打印支撑材料
天然生物材料MA化定制服务
CELLINK A
CELLINK A-RGD
CELLINK Bioink
CELLINK BONE
CELLINK FIBRIN
CELLINK LAMININK+
CELLINK LAMININK 111

zzj 2021.2.5

猜你喜欢

转载自blog.csdn.net/qq_20033523/article/details/113686519
今日推荐