循环自相关函数和谱相关密度(一)——公式推导

1 引言

R ^ x α ( f ) ≡ 0 \hat R_x^\alpha (f) \equiv 0 R^xα(f)0,对 ∀ α ≠ 0 , R ^ x ( τ ) ≠ 0 \forall \alpha \ne 0,{\hat R_x}(\tau ) \ne 0 α=0,R^x(τ)=0,则 x ( t ) x(t) x(t)为纯平稳信号。

R ^ x α ( f ) ≠ 0 \hat R_x^\alpha (f) \ne 0 R^xα(f)=0,当 α = m T 0 \alpha = \frac{m}{ { {T_0}}} α=T0m,则 x ( t ) x(t) x(t)具备纯循环平稳性,周期为 T 0 {T_0} T0

R ^ x α ( f ) ≠ 0 \hat R_x^\alpha (f) \ne 0 R^xα(f)=0,其中 α \alpha α不全为 1 T 0 \frac{1}{ { {T_0}}} T01的整数倍,则 x ( t ) x(t) x(t)为循环平稳的。

R ^ y α ( τ ) = ∑ n , m = − ∞ ∞ tr ⁡ { [ R ^ x α − ( n − m ) / T 0 ( τ ) e − j π ( n + m ) τ / T 0 ] ⊗ r n m α ( − τ ) } \hat R_y^\alpha (\tau ) = \sum\limits_{n,m = - \infty }^\infty {\operatorname{tr} \left\{ {\left[ {\hat R_x^{\alpha - (n - m)/{T_0}}(\tau ){ {\text{e}}^{ - j\pi (n + m)\tau /{T_0}}}} \right] \otimes r_{nm}^\alpha ( - \tau )} \right\}} R^yα(τ)=n,m=tr{ [R^xα(nm)/T0(τ)ejπ(n+m)τ/T0]rnmα(τ)}

r n m α ( τ ) ≜ ∫ − ∞ ∞ g ′ n ( t + 1 2 τ ) g m ∗ ( t − 1 2 τ ) e − i 2 π α t d t r_{nm}^\alpha (\tau ) \triangleq \int_{ - \infty }^\infty { { {g'}_n}} \left( {t + \frac{1}{2}\tau } \right)g_m^*\left( {t - \frac{1}{2}\tau } \right){ {\text{e}}^{ - {\text{i}}2\pi \alpha t}}{\text{d}}t rnmα(τ)gn(t+21τ)gm(t21τ)ei2παtdt

r n m α ( τ ) ↔ S ^ r α ( f ) = ∫ − ∞ ∞ ( ∫ − ∞ ∞ g ′ n ( t + 1 2 τ ) g m ∗ ( t − 1 2 τ ) e − j 2 π α t d t ) e − j 2 π f τ d τ r_{nm}^\alpha (\tau ) \leftrightarrow \hat S_r^\alpha (f) = \int_{ - \infty }^\infty {\left( {\int_{ - \infty }^\infty { { {g'}_n}\left( {t + \frac{1}{2}\tau } \right)g_m^*\left( {t - \frac{1}{2}\tau } \right){ {\text{e}}^{ - j2\pi \alpha t}}{\text{d}}t} } \right){e^{ - j2\pi f\tau }}d\tau } rnmα(τ)S^rα(f)=(gn(t+21τ)gm(t21τ)ej2παtdt)ej2πfτdτ

= ∫ − ∞ ∞ ∫ − ∞ ∞ g ′ n ( t + 1 2 τ ) e − j 2 π ( f + α / 2 ) ( t + τ / 2 ) d( t + 1 2 τ ) g m ∗ ( t − 1 2 τ ) e j 2 π ( f − α / 2 ) ( t − τ / 2 ) d ( t − 1 2 τ ) = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty { { {g'}_n}\left( {t + \frac{1}{2}\tau } \right){e^{ - j2\pi (f + \alpha /2)(t + \tau /2)}}{\text{d(}}t + \frac{1}{2}\tau )g_m^*\left( {t - \frac{1}{2}\tau } \right)} {e^{j2\pi (f - \alpha /2)(t - \tau /2)}}d(t - \frac{1}{2}\tau )} =gn(t+21τ)ej2π(f+α/2)(t+τ/2)d(t+21τ)gm(t21τ)ej2π(fα/2)(tτ/2)d(t21τ)

= ∫ − ∞ ∞ g ′ n ( t + 1 2 τ ) e − j 2 π ( f + α / 2 ) ( t + τ / 2 ) d( t + τ / 2 ) ∫ − ∞ ∞ ( g m ( t − 1 2 τ ) e − j 2 π ( f − α / 2 ) ( t − τ / 2 ) ) ∗ d ( t − 1 2 τ ) = \int_{ - \infty }^\infty { { {g'}_n}\left( {t + \frac{1}{2}\tau } \right){e^{ - j2\pi (f + \alpha /2)(t + \tau /2)}}{\text{d(}}t + \tau /2)\int_{ - \infty }^\infty { { {\left( { {g_m}\left( {t - \frac{1}{2}\tau } \right){e^{ - j2\pi (f - \alpha /2)(t - \tau /2)}}} \right)}^*}d(t - \frac{1}{2}\tau )} } =gn(t+21τ)ej2π(f+α/2)(t+τ/2)d(t+τ/2)(gm(t21τ)ej2π(fα/2)(tτ/2))d(t21τ)

= G ′ n ( f + α / 2 ) G m ∗ ( f − α / 2 ) = { {G'}_n}(f + \alpha /2)G_m^*(f - \alpha /2) =Gn(f+α/2)Gm(fα/2)(1)

S ^ y α ( f )   = ∑ n , m = − ∞ ∞ G n ( f + 1 2 α ) S ^ x α − ( n − m ) / T 0 ( f − n + m 2 T 0 ) G m ′ ( f − 1 2 α ) ∗ \hat S_y^\alpha (f){\text{ }} = \sum\limits_{n,m = - \infty }^\infty { {G_n}} \left( {f + \frac{1}{2}\alpha } \right)\hat S_x^{\alpha - (n - m)/{T_0}}\left( {f - \frac{ {n + m}}{ {2{T_0}}}} \right){G'_m}{\left( {f - \frac{1}{2}\alpha } \right)^*} S^yα(f) =n,m=Gn(f+21α)S^xα(nm)/T0(f2T0n+m)Gm(f21α)(2)

信号 x ( t ) x(t) x(t)通过线性时不变系统后的输出为

z ( t ) = h ( t ) ⊗ x ( t ) = ∫ − ∞ ∞ h ( u ) x ( t − u ) d u z(t) = h(t) \otimes x(t) = \int_{ - \infty }^\infty {h(u)x(t - u)du} z(t)=h(t)x(t)=h(u)x(tu)du(3)

其功率谱为

S z ( f ) = ∣ H ( f ) ∣ 2 S x ( f ) {S_z}(f) = {\left| {H(f)} \right|^2}{S_x}(f) Sz(f)=H(f)2Sx(f)(4)

谱相关密度函数为

S z α ( f ) = H ( f + α / 2 ) H ∗ ( f − α / 2 ) S x α ( f ) S_z^\alpha (f) = H(f + \alpha /2){H^*}(f - \alpha /2)S_x^\alpha (f) Szα(f)=H(f+α/2)H(fα/2)Sxα(f)(5)

2 周期抽样函数的循环自相关函数和谱相关密度函数

周期抽样函数可以表示为

$g(t) = \sum\limits_{n = - \infty }^\infty {\delta (t - nT)} $(6)

R x α ( τ ) ≜ lim ⁡ x → ∞ 1 T ∫ − T / 2 T / 2 x ( t + τ / 2 ) x ( t − τ / 2 ) d t = ⟨ x ( t + τ / 2 ) x ( t − τ / 2 ) ⟩ t R_x^\alpha (\tau ) \triangleq \mathop {\lim }\limits_{x \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} {x(t + \tau /2)x(t - \tau /2)dt} = {\left\langle {x(t + \tau /2)x(t - \tau /2)} \right\rangle _t} Rxα(τ)xlimT1T/2T/2x(t+τ/2)x(tτ/2)dt=x(t+τ/2)x(tτ/2)t,得

R g β ( τ ) = ⟨ ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ δ ( t + τ / 2 − n T ) δ ( t − τ / 2 − m T ) e − j 2 π β ⋅ t ⟩ t R_g^\beta (\tau ) = {\left\langle {\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\delta (t + \tau /2 - nT)\delta (t - \tau /2 - mT){e^{ - j2\pi \beta \cdot t}}} } } \right\rangle _t} Rgβ(τ)=n=m=δ(t+τ/2nT)δ(tτ/2mT)ej2πβtt

= ⟨ ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ δ ( ( τ / 2 + m T ) + τ / 2 − n T ) δ ( t − τ / 2 − m T ) e − j 2 π β ( t − τ / 2 + τ / 2 ) ⟩ t = {\left\langle {\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\delta ((\tau /2 + mT) + \tau /2 - nT)\delta (t - \tau /2 - mT){e^{ - j2\pi \beta (t - \tau /2 + \tau /2)}}} } } \right\rangle _t} =n=m=δ((τ/2+mT)+τ/2nT)δ(tτ/2mT)ej2πβ(tτ/2+τ/2)t

= e − j π β τ ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ δ ( τ + ( m − n ) T ) ⟨ ∑ m = − ∞ ∞ δ ( t − τ / 2 − m T ) e − j 2 π β ( t − τ / 2 ) ⟩ t = {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\delta (\tau + (m - n)T)} } {\left\langle {\sum\limits_{m = - \infty }^\infty {\delta (t - \tau /2 - mT){e^{ - j2\pi \beta (t - \tau /2)}}} } \right\rangle _t} =ejπβτn=m=δ(τ+(mn)T)m=δ(tτ/2mT)ej2πβ(tτ/2)t

u = t − τ / 2 ‾ ‾ e − j π β τ ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ δ ( τ + ( m − n ) T ) lim ⁡ T ′ → ∞ 1 T ′ ∫ − ( T ′ + τ ) / 2 ( T ′ − τ ) / 2 ∑ m = − ∞ ∞ δ ( u − m T ) e − j 2 π β m T d u {\underline{\underline {u = t - \tau /2}} } {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\delta (\tau + (m - n)T)} } \mathop {\lim }\limits_{T' \to \infty } \frac{1}{ {T'}}\int_{ - (T' + \tau )/2}^{(T' - \tau )/2} {\sum\limits_{m = - \infty }^\infty {\delta (u - mT){e^{ - j2\pi \beta mT}}} du} u=tτ/2ejπβτn=m=δ(τ+(mn)T)TlimT1(T+τ)/2(Tτ)/2m=δ(umT)ej2πβmTdu

= e − j π β τ ∑ n = − ∞ ∞ δ ( τ − n T ) lim ⁡ N → ∞ 1 2 N T + 2 ε ∫ − N T − ε N T + ε ∑ m = − N N δ ( u − m T ) e − j 2 π m ⋅ m d u = {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\delta (\tau - nT)} \mathop {\lim }\limits_{N \to \infty } \frac{1}{ {2NT + 2\varepsilon }}\int_{ - NT - \varepsilon }^{NT + \varepsilon } {\sum\limits_{m = - N}^N {\delta (u - mT){e^{ - j2\pi m \cdot m}}} du} =ejπβτn=δ(τnT)Nlim2NT+2ε1NTεNT+εm=NNδ(umT)ej2πmmdu

= e − j π β τ ∑ n = − ∞ ∞ δ ( τ − n T ) lim ⁡ N → ∞ 1 2 N T + 2 ε ∫ − N T − ε N T + ε ∑ m = − N N δ ( u − m T ) e − j 2 π m ⋅ m d u = {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\delta (\tau - nT)} \mathop {\lim }\limits_{N \to \infty } \frac{1}{ {2NT + 2\varepsilon }}\int_{ - NT - \varepsilon }^{NT + \varepsilon } {\sum\limits_{m = - N}^N {\delta (u - mT){e^{ - j2\pi m \cdot m}}} du} =ejπβτn=δ(τnT)Nlim2NT+2ε1NTεNT+εm=NNδ(umT)ej2πmmdu

= e − j π β τ ∑ n = − ∞ ∞ δ ( τ − n T ) lim ⁡ N → ∞ 1 2 N T + 2 ε ∑ m = − N N ∫ − N T − ε N T + ε δ ( u − m T ) d u = {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\delta (\tau - nT)} \mathop {\lim }\limits_{N \to \infty } \frac{1}{ {2NT + 2\varepsilon }}\sum\limits_{m = - N}^N {\int_{ - NT - \varepsilon }^{NT + \varepsilon } {\delta (u - mT)du} } =ejπβτn=δ(τnT)Nlim2NT+2ε1m=NNNTεNT+εδ(umT)du

= e − j π β τ ∑ n = − ∞ ∞ δ ( τ − n T ) lim ⁡ N → ∞ 2 N + 1 2 N T + 2 ε = {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\delta (\tau - nT)} \mathop {\lim }\limits_{N \to \infty } \frac{ {2N + 1}}{ {2NT + 2\varepsilon }} =ejπβτn=δ(τnT)Nlim2NT+2ε2N+1

= e − j π β τ ∑ n = − ∞ ∞ δ ( τ − n T ) = {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\delta (\tau - nT)} =ejπβτn=δ(τnT)(7)

则抽样函数的谱相关密度函数为

S g β ( f ) = ∫ − ∞ ∞ R g β ( τ ) e − j 2 π f τ d τ S_g^\beta (f) = \int_{ - \infty }^\infty {R_g^\beta (\tau ){e^{ - j2\pi f\tau }}d\tau } Sgβ(f)=Rgβ(τ)ej2πfτdτ

= ∫ − ∞ ∞ e − j π β τ ∑ n = − ∞ ∞ δ ( τ − n T ) e − j 2 π f τ d τ = \int_{ - \infty }^\infty { {e^{ - j\pi \beta \tau }}\sum\limits_{n = - \infty }^\infty {\delta (\tau - nT)} {e^{ - j2\pi f\tau }}d\tau } =ejπβτn=δ(τnT)ej2πfτdτ

= ∑ n = − ∞ ∞ e − j π β n T e − j 2 π f n T ∫ − ∞ ∞ δ ( τ − n T ) d τ = \sum\limits_{n = - \infty }^\infty { {e^{ - j\pi \beta nT}}{e^{ - j2\pi fnT}}\int_{ - \infty }^\infty {\delta (\tau - nT)d\tau } } =n=ejπβnTej2πfnTδ(τnT)dτ

= ∑ n = − ∞ ∞ e − j 2 π n T ( f + β 2 ) = \sum\limits_{n = - \infty }^\infty { {e^{ - j2\pi nT(f + \frac{\beta }{2})}}} =n=ej2πnT(f+2β)

= ∑ n = − ∞ ∞ e − j 2 π T ′ n ( f + β 2 ) = \sum\limits_{n = - \infty }^\infty { {e^{ - j\frac{ {2\pi }}{ {T'}}n(f + \frac{\beta }{2})}}} =n=ejT2πn(f+2β)(8)

其中 T ′ = 1 / T T' = 1/T T=1/T,由 ∑ n = − ∞ ∞ δ ( t − n T ) = 1 T ∑ n = − ∞ ∞ e j 2 π T n ⋅ t \sum\limits_{n = - \infty }^\infty {\delta (t - nT)} = \frac{1}{T}\sum\limits_{n = - \infty }^\infty { {e^{j\frac{ {2\pi }}{T}n \cdot t}}} n=δ(tnT)=T1n=ejT2πnt,得

S g β ( f ) = T ′ ∑ k = − ∞ ∞ δ ( f + β 2 − k T ′ ) = 1 T ∑ k = − ∞ ∞ δ ( f + β 2 − k T ) S_g^\beta (f) = T'\sum\limits_{k = - \infty }^\infty {\delta (f + \frac{\beta }{2} - kT')}= \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\delta (f + \frac{\beta }{2} - \frac{k}{T})} Sgβ(f)=Tk=δ(f+2βkT)=T1k=δ(f+2βTk)(9)

3 信号相乘前后谱相关密度函数关系

假设 x ( t ) = r ( t ) s ( t ) x(t) = r(t)s(t) x(t)=r(t)s(t),由

R x ( t , τ ) = E [ x ( t + τ 2 ) x ∗ ( t − τ 2 ) ] = R r ( t , τ ) R s ( t , τ ) {R_x}(t,\tau ) = E[x(t + \frac{\tau }{2}){x^*}(t - \frac{\tau }{2})] = {R_r}(t,\tau ){R_s}(t,\tau ) Rx(t,τ)=E[x(t+2τ)x(t2τ)]=Rr(t,τ)Rs(t,τ)(10)

${R_x}(t,\tau ) = \sum\limits_\alpha {R_x^\alpha (\tau ){e^{j2\pi \alpha t}}} $(11)

x ( t ) x(t) x(t)的循环自相关函数为

R x α ( τ ) = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 R x ( t , τ ) e − j 2 π α t d t R_x^\alpha (\tau ) = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} { {R_x}(t,\tau ){e^{ - j2\pi \alpha t}}dt} Rxα(τ)=TlimT1T/2T/2Rx(t,τ)ej2παtdt

= lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 R r ( t , τ ) R s ( t , τ ) e − j 2 π α t d t = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} { {R_r}(t,\tau ){R_s}(t,\tau ){e^{ - j2\pi \alpha t}}dt} =TlimT1T/2T/2Rr(t,τ)Rs(t,τ)ej2παtdt

= lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 ∑ β R r ( t , τ ) e − j 2 π ( α − β ) t R s ( t , τ ) e − j 2 π β t d t = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} {\sum\limits_\beta { {R_r}(t,\tau ){e^{ - j2\pi (\alpha - \beta )t}}{R_s}(t,\tau ){e^{ - j2\pi \beta t}}} dt} =TlimT1T/2T/2βRr(t,τ)ej2π(αβ)tRs(t,τ)ej2πβtdt

= ∑ β lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 R r ( t , τ ) e − j 2 π ( α − β ) t R s ( t , τ ) e − j 2 π β t d t = \sum\limits_\beta {\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} { {R_r}(t,\tau ){e^{ - j2\pi (\alpha - \beta )t}}{R_s}(t,\tau ){e^{ - j2\pi \beta t}}dt} } =βTlimT1T/2T/2Rr(t,τ)ej2π(αβ)tRs(t,τ)ej2πβtdt

= ∑ β R r α − β ( τ ) R s β ( τ ) = \sum\limits_\beta {R_r^{\alpha - \beta }(\tau )R_s^\beta (\tau )} =βRrαβ(τ)Rsβ(τ)

= ∑ β R r β ( τ ) R s α − β ( τ ) = \sum\limits_\beta {R_r^\beta (\tau )R_s^{\alpha - \beta }(\tau )} =βRrβ(τ)Rsαβ(τ) (12式)

由(12)可知,两个信号相乘后的循环自相关函数等于两个循环自相关函数在离散$\alpha $域的卷积。

其谱相关密度函数为

S x α ( f ) = ∫ − ∞ ∞ R x α ( τ ) e − j 2 π f τ d τ S_x^\alpha (f) = \int_{ - \infty }^\infty {R_x^\alpha (\tau ){e^{ - j2\pi f\tau }}d\tau } Sxα(f)=Rxα(τ)ej2πfτdτ

= ∫ − ∞ ∞ ∑ β R r β ( τ ) R s α − β ( τ ) e − j 2 π f τ d τ = \int_{ - \infty }^\infty {\sum\limits_\beta {R_r^\beta (\tau )R_s^{\alpha - \beta }(\tau )} {e^{ - j2\pi f\tau }}d\tau } =βRrβ(τ)Rsαβ(τ)ej2πfτdτ

= ∑ β ∫ − ∞ ∞ ∫ − ∞ ∞ R r β ( τ ) e − j 2 π F τ R s α − β ( τ ) e − j 2 π ( f − F ) τ d τ d F = \sum\limits_\beta {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {R_r^\beta (\tau ){e^{ - j2\pi F\tau }}R_s^{\alpha - \beta }(\tau ){e^{ - j2\pi (f - F)\tau }}d\tau dF} } } =βRrβ(τ)ej2πFτRsαβ(τ)ej2π(fF)τdτdF

= ∑ β ∫ − ∞ ∞ ∫ − ∞ ∞ R r β ( τ ) e − j 2 π F τ R s α − β ( τ ) e − j 2 π ( f − F ) τ d τ d F = \sum\limits_\beta {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {R_r^\beta (\tau ){e^{ - j2\pi F\tau }}R_s^{\alpha - \beta }(\tau ){e^{ - j2\pi (f - F)\tau }}d\tau dF} } } =βRrβ(τ)ej2πFτRsαβ(τ)ej2π(fF)τdτdF

= ∫ − ∞ ∞ ∑ β S r β ( F ) S s α − β ( f − F ) d F = \int_{ - \infty }^\infty {\sum\limits_\beta {S_r^\beta (F)S_s^{\alpha - \beta }(f - F)} dF} =βSrβ(F)Ssαβ(fF)dF

= ∑ β S r β ( f ) ⊗ S s α − β ( f ) = \sum\limits_\beta {S_r^\beta (f) \otimes S_s^{\alpha - \beta }(f)} =βSrβ(f)Ssαβ(f) (13式)

其中 ⊗ \otimes 表示卷积,由此可知两个信号相乘的谱相关等于两个谱相关在连续 f f f域和离散 α \alpha α域的双重卷积。

4 周期信号(Almost periodic)的循环自相关与谱相关密度函数

p ( t ) p(t) p(t)为周期信号,其傅里叶级数可以表示为

p ( t ) = ∑ β P β e j 2 π β t p(t) = \sum\limits_\beta { {P_\beta }{e^{j2\pi \beta t}}} p(t)=βPβej2πβt (14式)

其中 β = n T \beta = \frac{n}{T} β=Tn T T T为周期,则

P β = ⟨ p ( t ) e − j 2 π β t ⟩ t {P_\beta } = {\left\langle {p(t){e^{ - j2\pi \beta t}}} \right\rangle _t} Pβ=p(t)ej2πβtt (15式)

由循环自相关函数的定义得

R p α ( τ ) = ⟨ p ( t ) p ∗ ( t − τ ) e − j 2 π α ( t − τ / 2 ) ⟩ t R_p^\alpha (\tau ) = {\left\langle {p(t){p^*}(t - \tau ){e^{ - j2\pi \alpha (t - \tau /2)}}} \right\rangle _t} Rpα(τ)=p(t)p(tτ)ej2πα(tτ/2)t

= ⟨ ∑ β p ( t ) e − j 2 π β t p ∗ ( t − τ ) e − j 2 π ( α − β ) ( t − τ ) ⋅ e j π ( 2 β − α ) τ ⟩ t = {\left\langle {\sum\limits_\beta {p(t){e^{ - j2\pi \beta t}}{p^*}(t - \tau ){e^{ - j2\pi (\alpha - \beta )(t - \tau )}} \cdot {e^{j\pi (2\beta - \alpha )\tau }}} } \right\rangle _t} =βp(t)ej2πβtp(tτ)ej2π(αβ)(tτ)ejπ(2βα)τt

= ∑ β P β P α − β ∗ e j π ( 2 β − α ) τ = \sum\limits_\beta { {P_\beta }P_{\alpha - \beta }^*{e^{j\pi (2\beta - \alpha )\tau }}} =βPβPαβejπ(2βα)τ (16式)

则其谱相关密度函数为

S p α ( f ) = ∫ − ∞ ∞ ∑ β P β P α − β ∗ e j π ( 2 β − α ) τ e − j 2 π f τ d τ S_p^\alpha (f) = \int_{ - \infty }^\infty {\sum\limits_\beta { {P_\beta }P_{\alpha - \beta }^*{e^{j\pi (2\beta - \alpha )\tau }}} {e^{ - j2\pi f\tau }}d\tau } Spα(f)=βPβPαβejπ(2βα)τej2πfτdτ

= ∑ β P β P α − β ∗ ∫ − ∞ ∞ e − j 2 π ( f − β + α / 2 ) τ d τ = \sum\limits_\beta { {P_\beta }P_{\alpha - \beta }^*\int_{ - \infty }^\infty { {e^{ - j2\pi (f - \beta + \alpha /2)\tau }}d\tau } } =βPβPαβej2π(fβ+α/2)τdτ

= ∑ β P β P α − β ∗ δ ( f − β + α / 2 ) = \sum\limits_\beta { {P_\beta }P_{\alpha - \beta }^*\delta (f - \beta + \alpha /2)} =βPβPαβδ(fβ+α/2) (17式)

5 连续平稳信号被理想抽样后的谱相关密度函数

连续平稳信号 x ( t ) x(t) x(t)被理想抽样后的信号可以表示为

y ( t ) = x ( t ) g ( t ) = ∑ n = − ∞ ∞ x ( n T ) δ ( t − n T ) y(t) = x(t)g(t) = \sum\limits_{n = - \infty }^\infty {x(nT)\delta (t - nT)} y(t)=x(t)g(t)=n=x(nT)δ(tnT) (18式)

其中, g ( t ) = ∑ n = − ∞ ∞ δ ( t − n T ) g(t) = \sum\limits_{n = - \infty }^\infty {\delta (t - nT)} g(t)=n=δ(tnT),则由(13)得 y ( t ) y(t) y(t)的谱相关密度函数为

S y α ( f ) = ∫ − ∞ ∞ ∑ β S g β ( F ) S x α − β ( f − F ) d F S_y^\alpha (f) = \int_{ - \infty }^\infty {\sum\limits_\beta {S_g^\beta (F)S_x^{\alpha - \beta }(f - F)} dF} Syα(f)=βSgβ(F)Sxαβ(fF)dF

= ∑ β ∫ − ∞ ∞ 1 T 2 ∑ n = − ∞ ∞ δ ( F + β 2 − n T ) S x α − β ( f − F ) d F = \sum\limits_\beta {\int_{ - \infty }^\infty {\frac{1}{ { {T^2}}}\sum\limits_{n = - \infty }^\infty {\delta (F + \frac{\beta }{2} - \frac{n}{T})} S_x^{\alpha - \beta }(f - F)dF} } =βT21n=δ(F+2βTn)Sxαβ(fF)dF

= ∑ m = − ∞ ∞ ∫ − ∞ ∞ 1 T 2 ∑ n = − ∞ ∞ δ ( F + β 2 − n T ) S x α − β ( f − F ) d F = \sum\limits_{m = - \infty }^\infty {\int_{ - \infty }^\infty {\frac{1}{ { {T^2}}}\sum\limits_{n = - \infty }^\infty {\delta (F + \frac{\beta }{2} - \frac{n}{T})} S_x^{\alpha - \beta }(f - F)dF} } =m=T21n=δ(F+2βTn)Sxαβ(fF)dF

= 1 T 2 ∑ m = − ∞ ∞ ∑ n = − ∞ ∞ S x α − m T ( f + m 2 T − n T ) ∫ − ∞ ∞ δ ( F + m 2 T − n T ) d F = \frac{1}{ { {T^2}}}\sum\limits_{m = - \infty }^\infty {\sum\limits_{n = - \infty }^\infty {S_x^{\alpha - \frac{m}{T}}(f + \frac{m}{ {2T}} - \frac{n}{T})} \int_{ - \infty }^\infty {\delta (F + \frac{m}{ {2T}} - \frac{n}{T})dF} } =T21m=n=SxαTm(f+2TmTn)δ(F+2TmTn)dF

= 1 T 2 ∑ m = − ∞ ∞ ∑ n = − ∞ ∞ S x α − m T ( f + m 2 T − n T ) = \frac{1}{ { {T^2}}}\sum\limits_{m = - \infty }^\infty {\sum\limits_{n = - \infty }^\infty {S_x^{\alpha - \frac{m}{T}}(f + \frac{m}{ {2T}} - \frac{n}{T})} } =T21m=n=SxαTm(f+2TmTn) (19式)

6 连续平稳信号与其周期采样序列的谱相关密度函数关系

连续平稳信号x(t)非对称形式的循环自相关函数为
在这里插入图片描述(1)
在这里插入图片描述
由(1)定义离散时间序列 x ( n T 0 ) x(nT_0) x(nT0)的循环自相关函数为
在这里插入图片描述(2)
x(t)的谱相关密度函数为
在这里插入图片描述(3)
由(3)定义 x ( n T 0 ) x(nT_0) x(nT0)的谱相关密度函数为
在这里插入图片描述(4)
将恒等式
在这里插入图片描述(5)
代入(2),得
R ~ x α ( k T 0 ) ≜ lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N x ( n T 0 + k T 0 ) x ( n T 0 ) e − j 2 π α ( n + k / 2 ) T 0 \tilde R_x^\alpha (k{T_0}) \triangleq \mathop {\lim }\limits_{N \to \infty } \frac{1}{ {2N + 1}}\sum\limits_{n = - N}^N {x(n{T_0} + k{T_0})x(n{T_0})} {e^{ - j2\pi \alpha (n + k/2){T_0}}} R~xα(kT0)Nlim2N+11n=NNx(nT0+kT0)x(nT0)ej2πα(n+k/2)T0

n T 0 → u ‾ ‾ ∑ m = − ∞ ∞ lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 x ( u + k T 0 ) x ( u ) e − j 2 π α ( u + k T 0 / 2 ) e − j 2 π m u / T 0 d u {\underline{\underline {n{T_0} \to u}} } \sum\limits_{m = - \infty }^\infty {\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} {x(u + k{T_0})x(u)} } {e^{ - j2\pi \alpha (u + k{T_0}/2)}}{e^{ - j2\pi mu/{T_0}}}du nT0um=TlimT1T/2T/2x(u+kT0)x(u)ej2πα(u+kT0/2)ej2πmu/T0du

= ∑ m = − ∞ ∞ lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 x ( u + k T 0 ) x ( u ) e − j 2 π α ( u + k T 0 / 2 ) e − j 2 π m / T 0 ( u + k T 0 / 2 ) e j π m k d u = \sum\limits_{m = - \infty }^\infty {\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} {x(u + k{T_0})x(u)} } {e^{ - j2\pi \alpha (u + k{T_0}/2)}}{e^{ - j2\pi m/{T_0}(u + k{T_0}/2)}}{e^{j\pi mk}}du =m=TlimT1T/2T/2x(u+kT0)x(u)ej2πα(u+kT0/2)ej2πm/T0(u+kT0/2)ejπmkdu

= ∑ m = − ∞ ∞ lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 x ( u + k T 0 ) x ( u ) e − j 2 π ( α + m / T 0 ) ( u + k T 0 / 2 ) d u ⋅ e j π m k = \sum\limits_{m = - \infty }^\infty {\mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int_{ - T/2}^{T/2} {x(u + k{T_0})x(u)} } {e^{ - j2\pi (\alpha + m/{T_0})(u + k{T_0}/2)}}du \cdot {e^{j\pi mk}} =m=TlimT1T/2T/2x(u+kT0)x(u)ej2π(α+m/T0)(u+kT0/2)duejπmk

= ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( k T 0 ) e j π m k = \sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(k{T_0})} {e^{j\pi mk}} =m=R^xα + m/T0(kT0)ejπmk (6式)

将(6)代入(4),得一种错误的结果如下

S ~ x α ( f ) = ∑ k = − ∞ ∞ [ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( k T 0 ) e j π m k ] e − j 2 π k T 0 f \tilde S_x^\alpha (f) = \sum\limits_{k = - \infty }^\infty {[\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(k{T_0})} {e^{j\pi mk}}]{e^{ - j2\pi k{T_0}f}}} S~xα(f)=k=[m=R^xα + m/T0(kT0)ejπmk]ej2πkT0f

= ∑ k = − ∞ ∞ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( k T 0 ) e − j 2 π k T 0 ( f − m 2 T 0 ) = \sum\limits_{k = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(k{T_0})} {e^{ - j2\pi k{T_0}(f - \frac{m}{ {2{T_0}}})}}} =k=m=R^xα + m/T0(kT0)ej2πkT0(f2T0m)

k T 0 → τ ‾ ‾ 1 T 0 ∫ − ∞ ∞ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( τ ) e − j 2 π ( f − m 2 T 0 ) τ d τ {\underline{\underline {k{T_0} \to \tau }} } \frac{1}{ { {T_0}}}\int_{ - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(\tau ){e^{ - j2\pi (f - \frac{m}{ {2{T_0}}})\tau }}} d\tau } kT0τT01m=R^xα + m/T0(τ)ej2π(f2T0m)τdτ

= 1 T 0 ∑ m = − ∞ ∞ ∫ − ∞ ∞ R ^ x α  +  m / T 0 ( τ ) e − j 2 π ( f − m 2 T 0 ) τ d τ = \frac{1}{ { {T_0}}}\sum\limits_{m = - \infty }^\infty {\int_{ - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(\tau ){e^{ - j2\pi (f - \frac{m}{ {2{T_0}}})\tau }}d\tau } } =T01m=R^xα + m/T0(τ)ej2π(f2T0m)τdτ

= 1 T 0 ∑ m = − ∞ ∞ S ^ x α  +  m / T 0 ( f − m 2 T 0 ) = \frac{1}{ { {T_0}}}\sum\limits_{m = - \infty }^\infty {\hat S_x^{\alpha {\text{ + }}m/{T_0}}(f - \frac{m}{ {2{T_0}}})} =T01m=S^xα + m/T0(f2T0m) (20式)

正确结果应为 S x α ( f ) S_x^\alpha (f) Sxα(f)

S ~ x α ( f ) = ∑ k = − ∞ ∞ [ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( k T 0 ) e j π m k ] e − j 2 π k T 0 f \tilde S_x^\alpha (f) = \sum\limits_{k = - \infty }^\infty {[\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(k{T_0})} {e^{j\pi mk}}]{e^{ - j2\pi k{T_0}f}}} S~xα(f)=k=[m=R^xα + m/T0(kT0)ejπmk]ej2πkT0f

= ∑ k = − ∞ ∞ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( k T 0 ) e − j 2 π k T 0 ( f − m 2 T 0 ) = \sum\limits_{k = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(k{T_0})} {e^{ - j2\pi k{T_0}(f - \frac{m}{ {2{T_0}}})}}} =k=m=R^xα + m/T0(kT0)ej2πkT0(f2T0m)

= ∑ k = − ∞ ∞ ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( k T 0 ) e − j 2 π k T 0 ( f − m 2 T 0 ) ⋅ e j 2 π n k = \sum\limits_{k = - \infty }^\infty {\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(k{T_0})} {e^{ - j2\pi k{T_0}(f - \frac{m}{ {2{T_0}}})}} \cdot {e^{j2\pi nk}}} } =k=n=m=R^xα + m/T0(kT0)ej2πkT0(f2T0m)ej2πnk

= ∑ k = − ∞ ∞ ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( k T 0 ) e − j 2 π k T 0 ( f − m 2 T 0 − n T 0 ) = \sum\limits_{k = - \infty }^\infty {\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(k{T_0})} {e^{ - j2\pi k{T_0}(f - \frac{m}{ {2{T_0}}} - \frac{n}{ { {T_0}}})}}} } =k=n=m=R^xα + m/T0(kT0)ej2πkT0(f2T0mT0n)

k T 0 → τ ‾ ‾ 1 T 0 ∫ − ∞ ∞ ∑ m = − ∞ ∞ R ^ x α  +  m / T 0 ( τ ) e − j 2 π ( f − m 2 T 0 − n T 0 ) τ d τ {\underline{\underline {k{T_0} \to \tau }} } \frac{1}{ { {T_0}}}\int_{ - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(\tau ){e^{ - j2\pi (f - \frac{m}{ {2{T_0}}} - \frac{n}{ { {T_0}}})\tau }}} d\tau } kT0τT01m=R^xα + m/T0(τ)ej2π(f2T0mT0n)τdτ

= 1 T 0 ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ ∫ − ∞ ∞ R ^ x α  +  m / T 0 ( τ ) e − j 2 π ( f − m 2 T 0 − n T 0 ) τ d τ = \frac{1}{ { {T_0}}}\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\int_{ - \infty }^\infty {\hat R_x^{\alpha {\text{ + }}m/{T_0}}(\tau ){e^{ - j2\pi (f - \frac{m}{ {2{T_0}}} - \frac{n}{ { {T_0}}})\tau }}d\tau } } } =T01n=m=R^xα + m/T0(τ)ej2π(f2T0mT0n)τdτ

= 1 T 0 ∑ n = − ∞ ∞ ∑ m = − ∞ ∞ S ^ x α  +  m / T 0 ( f − m 2 T 0 − n T 0 ) = \frac{1}{ { {T_0}}}\sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {\hat S_x^{\alpha {\text{ + }}m/{T_0}}(f - \frac{m}{ {2{T_0}}} - \frac{n}{ { {T_0}}})} } =T01n=m=S^xα + m/T0(f2T0mT0n) (21式)

猜你喜欢

转载自blog.csdn.net/wlwdecs_dn/article/details/109082053