无约束 benchmark 函数

随手记录下 12 个无约束 benchmark 函数

                   

(1)Spherical函数

                                              f 1 = ∑ i = 1 n x i 2 , x i ∈ [ − 100 , 100 ] { {f}_{1}}=\sum\limits_{i=1}^{n}{x_{i}^{2}},\quad { {x}_{i}}\in [-100,100] f1=i=1nxi2,xi[100,100]

              全局最优解 x ∗ = ( 0 , … , 0 ) x^{*}=(0, \ldots, 0) x=(0,,0) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

(2)Rosenbrock函数

                                       f 2 = ∑ i = 1 n ( 100 ( x i + 1 − x i 2 ) 2 + ( x i − 1 ) 2 ) , x i ∈ [ − 30 , 30 ] { {f}_{2}}=\sum\limits_{i=1}^{n}{\left( 100{ {\left( { {x}_{i+1}}-x_{i}^{2} \right)}^{2}}+{ {\left( { {x}_{i}}-1 \right)}^{2}} \right)},\quad { {x}_{i}}\in [-30,30] f2=i=1n(100(xi+1xi2)2+(xi1)2),xi[30,30]

              全局最优解 x ∗ = ( 0 , … , 0 ) x^{*}=(0, \ldots, 0) x=(0,,0) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

(3)Rastrigin 函数

                                       f 3 = ∑ i = 1 n ( x i 2 − 10 cos ⁡ ( 2 π x i ) + 10 ) , x i ∈ [ − 5.12 , 5.12 ] { {f}_{3}}=\sum\limits_{i=1}^{n}{\left( x_{i}^{2}-10\cos \left( 2\pi { {x}_{i}} \right)+10 \right)},\quad { {x}_{i}}\in [-5.12,5.12] f3=i=1n(xi210cos(2πxi)+10),xi[5.12,5.12]

              全局最优解 x ∗ = ( 1 , … , 1 ) { {x}^{*}}=(1,\ldots ,1) x=(1,,1) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

扫描二维码关注公众号,回复: 11692412 查看本文章

(4)Griewank函数

                    f 4 = 1 4000 ∑ i = 1 n x i 2 − ∏ i n cos ⁡ ∣ x i i ∣ + 1 , x i ∈ [ − 600 , 600 ] { {f}_{4}}=\frac{1}{4000}\sum\limits_{i=1}^{n}{x_{i}^{2}}-\prod\limits_{i}^{n}{\cos \left| \frac{ { {x}_{i}}}{\sqrt{i}} \right|}+1,\quad { {x}_{i}}\in [-600,600] f4=40001i=1nxi2incosi xi+1,xi[600,600]

              全局最优解 x ∗ = ( 0 , … , 0 ) x^{*}=(0, \ldots, 0) x=(0,,0) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

(5)Ackley 函数

                   

f 5 = − 20 exp ⁡ ( − 0.2 1 n ∑ i = 1 n x i 2 ) − exp ⁡ ( 1 n ∑ i = 1 n cos ⁡ ( 2 π x i ) )   + 20 + e , x i ∈ [ − 32 , 32 ]   { {f}_{5}}=-20\exp (-0.2\sqrt{\frac{1}{n}\sum\limits_{i=1}^{n}{x_{i}^{2}}})-\exp \left( \frac{1}{n}\sum\limits_{i=1}^{n}{\cos }\left( 2\pi { {x}_{i}} \right) \right)\text{ }+20+e,\quad { {x}_{i}}\in [-32,32]\text{ } f5=20exp(0.2n1i=1nxi2 )exp(n1i=1ncos(2πxi)) +20+e,xi[32,32] 

                    

              全局最优解 x ∗ = ( 0 , … , 0 ) x^{*}=(0, \ldots, 0) x=(0,,0) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

(6)High conditioned elliptic函数

                                                          f 6 ( x ) = ∑ i = 1 n ( 10 6 ) i − 1 n − 1 x i 2   x i ∈ [ − 100 , 100 ]   { {f}_{6}}(x)=\sum\limits_{i=1}^{n}{ { {\left( { {10}^{6}} \right)}^{\frac{i-1}{n-1}}}}x_{i}^{2}\quad \ { {x}_{i}}\in [-100,100]\text{ } f6(x)=i=1n(106)n1i1xi2 xi[100,100] 

              全局最优解 x ∗ = ( 0 , … , 0 ) x^{*}=(0, \ldots, 0) x=(0,,0) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

(7)Michalewicz函数

                                                          f 7 ( x ) = − ∑ i = 1 n sin ⁡ ( x i ) sin ⁡ ( i x i 2 π ) 20 x i ∈ [ 0 , π ]   { {f}_{7}}(x)=-\sum\limits_{i=1}^{n}{\sin }\left( { {x}_{i}} \right)\sin { {\left( \frac{ix_{i}^{2}}{\pi } \right)}^{20}}\quad { {x}_{i}}\in [0,\pi ]\text{ } f7(x)=i=1nsin(xi)sin(πixi2)20xi[0,π] 

              全局最优解未知。

                   

(8)Trid函数

                                       f 8 ( x ) = ∑ i = 1 n ( x i − 1 ) 2 − ∑ i = 2 n x i x i − 1 x i ∈ [ − n 2 , n 2 ]   { {f}_{8}}(x)=\sum\limits_{i=1}^{n}{ { {\left( { {x}_{i}}-1 \right)}^{2}}}-\sum\limits_{i=2}^{n}{ { {x}_{i}}}{ {x}_{i-1}}\quad { {x}_{i}}\in [-{ {n}^{2}},{ {n}^{2}}]\text{ } f8(x)=i=1n(xi1)2i=2nxixi1xi[n2,n2] 

              全局最优解 i ( n + 1 − i ) i(n+1-i) i(n+1i) − n ( n + 4 ) ( n − 1 ) 6 -\frac{n(n+4)(n-1)}{6} 6n(n+4)(n1)

                   

(9)Schwefel函数

                                                          f 9 = ∑ i = 1 n [ − x i sin ⁡ ( ∣ x i ∣ ) ] x i ∈ [ − 500 , 500 ]   { {f}_{9}}=\sum\limits_{i=1}^{n}{\left[ -{ {x}_{i}}\sin (\sqrt{\left| { {x}_{i}} \right|}) \right]}\quad { {x}_{i}}\in [-500,500]\text{ } f9=i=1n[xisin(xi )]xi[500,500] 

              全局最优解 x ∗ = ( 420.9687 , … , 420.9687 ) { {x}^{*}}=(\text{420}\text{.9687},\ldots ,\text{420}\text{.9687}) x=(420.9687,,420.9687) f ( x ∗ ) = .418.9829n f\left( { {x}^{*}} \right)=\text{.418}\text{.9829n} f(x)=.418.9829n

                   

(10)Schwefel 1.2函数

                                                          f 10 = ∑ i = 1 n ( ∑ j = 1 i x j ) 2   x i ∈ [ − 100 , 100 ]   { {f}_{10}}=\sum\limits_{i=1}^{n}{ { {\left( \sum\limits_{j=1}^{i}{ { {x}_{j}}} \right)}^{2}}}\quad \ { {x}_{i}}\in [-100,100]\text{ } f10=i=1n(j=1ixj)2 xi[100,100] 

              全局最优解 x ∗ = ( 0 , … , 0 ) x^{*}=(0, \ldots, 0) x=(0,,0) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

(11)Schwefel 2.4函数

                                                          f 11 = ∑ i = 1 n [ ( x i − 1 ) 2 + ( x 1 − x i 2 ) 2 ]   x i ∈ [ 0 , 10 ]   { {f}_{11}}=\sum\limits_{i=1}^{n}{\left[ { {\left( { {x}_{i}}-1 \right)}^{2}}+{ {\left( { {x}_{1}}-x_{i}^{2} \right)}^{2}} \right]}\quad \ { {x}_{i}}\in [0,10]\text{ } f11=i=1n[(xi1)2+(x1xi2)2] xi[0,10] 

              全局最优解 x ∗ = ( 1 , … , 1 ) { {x}^{*}}=(1,\ldots ,1) x=(1,,1) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

                   

(12)Weierstrass函数

                   

f 12 = ∑ i = 1 n ∑ k = 0 k max ⁡ [ a k cos ⁡ ( 2 π b k ( x i + 0.5 ) ) ]   − n ∑ k = 0 k max ⁡ a k cos ⁡ ( π b k x i )     x i ∈ [ − 0.5 , 0.5 ]   { {f}_{12}}=\sum\limits_{i=1}^{n}{\sum\limits_{k=0}^{ { {k}_{\max }}}{\left[ { {a}^{k}}\cos \left( 2\pi { {b}^{k}}\left( { {x}_{i}}+0.5 \right) \right) \right]}}\text{ }-n\sum\limits_{k=0}^{ { {k}_{\max }}}{ { {a}^{k}}}\cos \left( \pi { {b}^{k}}{ {x}_{i}} \right)\text{ }\quad \ { {x}_{i}}\in [-0.5,0.5]\text{ } f12=i=1nk=0kmax[akcos(2πbk(xi+0.5))] nk=0kmaxakcos(πbkxi)  xi[0.5,0.5] 

                   

              其中。 a = 0.5 ,    b = 3 a=0.5,\ \ b=3 a=0.5,  b=3 k max ⁡ = 20 k_{\max }=20 kmax=20;全局最优解 x ∗ = ( 0 , … , 0 ) x^{*}=(0, \ldots, 0) x=(0,,0) f ( x ∗ ) = 0 f\left( { {x}^{*}} \right)=0 f(x)=0

猜你喜欢

转载自blog.csdn.net/qq_43657442/article/details/108348393