Apllo进阶课程10- Apollo感知之旅——感知概貌

Apollo感知之旅——感知概貌

对于每个无人驾驶汽车,它的核心竞争力之一就是利用海量的传感器数据,来模仿人脑理解这个世界。谈论传感器时也会涉及到神经网络、深度学习、人工智能。

感知概貌

感知是机器人学科的问题,机器人要做的即是像人类学习,但不是完全模仿,应做到扬长避短。例如飞机的飞行不需要和鸟的飞行一样,而是要根据自己的特性进行针对性设计和优化,发挥出飞机本身的特性。感知的目的是寻找机器的特长并发挥出来,向人类学习并做得比人类更好。

人类开车与机器开车在感知上的区别

人类驾驶员开车主要借助眼睛、耳朵,辅助以倒车影像和雷达来获取驾驶环境的信息。机器感知系统则根据各种各样的传感器来获取汽车周围的驾驶环境,包括Lidar,Camera,Radar,超声波雷达以及拾音器等。相对人类而言,机器感知是全覆盖,并且感知精度更高,能够达到厘米级别,但是机器感知在语义感知方面相差太大。

在地图定位方面,人类驾驶员主要依靠导航地图,或者依据交通指示牌进行路径规划和导航。机器感知系统则依赖高精地图。高精地图和导航地图的最大差别是有参考线,汽车需要根据参考线进行行驶,而人很大程度上是根据经验驾驶。例如在十字路口,人类通常是根据经验以及前车经过十字路口或者转弯变道,而无人车是根据高精地图的参考线行驶。

输出信息的比较,人类驾驶员的感知信息输出主要是大脑输出,一是道路信息,包括车道线位置,是左转还是右转车道,是否限速,实线还是虚线等。第二是动态障碍物信息,主要包括障碍物位置、类别、形状大小、相对速度、行为意图等。除此之外,人还需要通过眼睛感知交通信号灯的状态。无人车感知的信息输出主要是各个传感器的数据,固定目标更多的是依赖高精地图,减少在线识别。

道路信息通常以高精地图作为参考。障碍物信息通常使用障碍物检测技术获取,包括检测障碍物的位置(3D位置)、类别、形状以及障碍物跟踪。此外还需要根据不同的传感器数据进行传感器融合获得更精确的感知,保证安全驾驶。

当前无人车感知主要通过摄像头来获取交通信号灯的颜色,灯的语义信息可以由地图提前标注好,长远的目标是通过V2X实现交通信号灯的感知。

相对人类驾驶而言,无人车系统为机器做了很多的工作,把固定信息都嵌入到地图里面,在线识别只针对最小集进行处理,以保证系统的高效和鲁棒性。无人车感知的缺点是强烈依赖高精地图。

多维度剖析感知模块

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_17437129/article/details/107927043