matlab判断系统稳定性 -Routh劳斯判据

Routh(稳定判据)-代数判据(依据根与系数的关系判断根的分布)

1.系统稳定的必要条件

设系统特征方程为:
D ( s ) = a n s n + a n 1 s n 1 + + a 1 s + a 0 = 0 \boldsymbol{D}(s)=\boldsymbol{a}_{n} \boldsymbol{s}^{n}+\boldsymbol{a}_{n-1} \boldsymbol{s}^{n-1}+\cdots+\boldsymbol{a}_{1} s+\boldsymbol{a}_{0}=\boldsymbol{0}

s n + a n 1 a n s n 1 + + a 1 a n s + a 0 a n = ( s s 1 ) ( s s 2 ) ( s s n ) s^{n}+\frac{a_{n-1}}{a_{n}} s^{n-1}+\cdots+\frac{a_{1}}{a_{n}} s+\frac{a_{0}}{a_{n}}=\left(s-s_{1}\right)\left(s-s_{2}\right) \cdots\left(s-s_{n}\right)
特征根是: s 1 , s 2 , s 3 . . . s_1,s_2,s_3...

比较系数:
a n 1 a n = i = 1 n s i , a n 2 a n = i j i = 1 , j = 2 n s i s j \frac{a_{n-1}}{a_{n}}=-\sum_{i=1}^{n} s_{i}, \quad \frac{a_{n-2}}{a_{n}}=\sum_{i \leq j \atop i=1, j=2}^{n} s_{i} s_{j}
a n 3 a n = i < j < k i = 1 , j = 2 , k = 3 n s i s j s k , a 0 a n = ( 1 ) n i = 1 n s i \frac{a_{n-3}}{a_{n}}=-\sum_{i<j<k \atop i=1, j=2, k=3}^{n} s_{i} s_{j} s_{k}, \quad \frac{a_{0}}{a_{n}}=(-1)^{n} \prod_{i=1}^{n} s_{i}

系统稳定的必要条件:
各系数同号且不为零

a n > 0 , a u 1 > 0 , , a 1 > 0 , a 0 > 0 a_{\mathrm{n}}>0, a_{\mathrm{u}-1}>0, \ldots, a_{1}>0, a_{0}>0

2.系统稳定的充要条件

特征方程: D ( s ) = a n s n + a n 1 s n 1 + + a 1 s + a 0 = 0 \boldsymbol{D}(s)=\boldsymbol{a}_{n} \boldsymbol{s}^{n}+\boldsymbol{a}_{n-1} \boldsymbol{s}^{n-1}+\cdots+\boldsymbol{a}_{1} s+\boldsymbol{a}_{0}=\mathbf{0}

Routh表:
s n a n a n 2 a n 4 a n 6 s n 1 a n 1 a n 3 a n 5 a n 7 s n 2 A 1 A 2 A 3 A 4 s n 3 B 1 B 2 B 3 B 4 s 2 D 1 D 2 s 1 E 1 s 0 F 1 \begin{array}{lllllll} s^{n} & a_{n} & a_{n-2} & a_{n-4} & a_{n-6} & \cdots \\ s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & \cdots \\ s^{n-2} & A_{1} & A_{2} & A_{3} & A_{4} & \cdots \\ s^{n-3} & B_{1} & B_{2} & B_{3} & B_{4} & \cdots \\ \vdots & & \vdots & \vdots & \vdots \\ s^{2} & D_{1} & D_{2} & & & \\ s^{1} & E_{1} & & & & \\ s^{0} & F_{1} & & & & \end{array}

其中:
A 1 = a n 1 a n 2 a n a n 3 a n 1 B 1 = A 1 a n 3 a n 1 A 2 A 1 A 2 = a n 1 a n 4 a n a n 5 a n 1 B 2 = A 1 a n 5 a n 1 A 3 A 1 A 3 = a n 1 a n 6 a n a n 7 a n 1 B 3 = A 1 a n 7 a n 1 A 4 A 1 \begin{array}{cl} A_{1}=\frac{a_{n-1} a_{n-2}-a_{n} a_{n-3}}{a_{n-1}} & B_{1}=\frac{A_{1} a_{n-3}-a_{n-1} A_{2}}{A_{1}} \\ A_{2}=\frac{a_{n-1} a_{n-4}-a_{n} a_{n-5}}{a_{n-1}} & B_{2}=\frac{A_{1} a_{n-5}-a_{n-1} A_{3}}{A_{1}} \\ A_{3}=\frac{a_{n-1} a_{n-6}-a_{n} a_{n-7}}{a_{n-1}} & B_{3}=\frac{A_{1} a_{n-7}-a_{n-1} A_{4}}{A_{1}} \end{array}

Routh判据:
Routh表中第一列各元符号改变的次数等于系统特征方程具有正实部特征根的个数。
因此,系统稳定的充要条件是Routh表中第一列各元的符号均为正,且值不为零。
上面的内容都来自[1]

###########################下面是matlab计算routh表######################

例1.系统的特征方程
D ( s ) = s 4 + s 3 19 s 2 + 11 s + 30 = 0 \mathbf{D}(s)=s^{4}+s^{3}-19 s^{2}+11 s+30=0

Routh表:
s 4 1 19 30 s 3 1 11 0 s 2 1 × ( 19 ) 1 × 11 1 = 30 30 0 ( ) s 1 ( 30 ) × 11 1 × 30 30 = 12 0 0 ( ) s 0 30 0 0 \begin{array}{lccc} s^{4} & \mathbf{1} & \mathbf{- 1 9} & \mathbf{3 0} \\ s^{3} & \mathbf{1} & \mathbf{1 1} & \mathbf{0} \\ s^{2} & \frac{\mathbf{1} \times(-\mathbf{1 9})-\mathbf{1} \times \mathbf{1 1}}{\mathbf{1}}=-\mathbf{3 0} & \mathbf{3 0} & \mathbf{0}(改变符号一次) \\ s^{1} & \frac{(-\mathbf{3 0}) \times \mathbf{1 1}-\mathbf{1} \times \mathbf{3 0}}{-\mathbf{3 0}}=\mathbf{1 2} & \mathbf{0} & \mathbf{0}(改变符号一次) \\ s^{0} & \mathbf{3 0} & \mathbf{0} & \mathbf{0} \end{array}

routh_compute.m计算得到:
[ 1, -19, 30]
[ 1, 11, 0]
[ -30, 30, 0]
[ 12, 0, 0]
[ 30, 0, 0]

Matlab实验结果分析:
由于第一列元素没有全部为正,因此该系统不稳定.

特别地有:

系统阶数 n的值 充要条件
二阶 2 a 2 > 0 , a 1 > 0 , a 0 > 0 a_{2}>0, \quad a_{1}>0, \quad a_{0}>0
三阶 3 a 3 > 0 , a 2 > 0 , a 0 > 0 , a 1 a 2 a 0 a 3 > 0 a_{3}>0, \quad a_{2}>0, \quad a_{0}>0, \quad a_{1} a_{2}-a_{0} a_{3}>0

Reference:
[1系统的稳定性常见判据

猜你喜欢

转载自blog.csdn.net/appleyuchi/article/details/107592282