CyclicBarrier 深入源码解析

  CyclicBarrier意为“循环栅栏”,是一个可循环利用的屏障。CyclicBarrier可以使指定数量线程到达阻塞点后继续后续任务。

  演示示例:

  首先,新建一个线程类,用于模拟多线程环境。

package com.securitit.serialize.juc;

import java.util.concurrent.CyclicBarrier;

public class CyclicBarrierThread extends Thread {
	// CyclicBarrier实例.
	private CyclicBarrier cyclicBarrier;
	// Constructor.
	public CyclicBarrierThread(CyclicBarrier cyclicBarrier) {
		this.cyclicBarrier = cyclicBarrier;
	}

	@Override
	public void run() {
		try {
			Thread.sleep(1000);
			System.out.println(Thread.currentThread().getName() + " 到达循环栅栏-A");
			cyclicBarrier.await();
			System.out.println(Thread.currentThread().getName() + " 通过循环栅栏-A");

			Thread.sleep(2000);
			System.out.println(Thread.currentThread().getName() + " 到达循环栅栏-B");
			cyclicBarrier.await();
			System.out.println(Thread.currentThread().getName() + " 通过循环栅栏-B");
		} catch (Exception e) {
			e.printStackTrace();
		}
	}

}

  在测试类中,启动多线程对循环栅栏CyclicBarrier进行测试。

package com.securitit.serialize.juc;

import java.util.concurrent.CyclicBarrier;

public class CyclicBarrierTester {
	// CyclicBarrier实例.
	private static CyclicBarrier cyclicBarrier = new CyclicBarrier(3);

	public static void main(String[] args) throws Exception {
		new CyclicBarrierThread(cyclicBarrier).start();
		new CyclicBarrierThread(cyclicBarrier).start();
		new CyclicBarrierThread(cyclicBarrier).start();
	}

}

  输出结果:

Thread-2 到达循环栅栏-A
Thread-1 到达循环栅栏-A
Thread-0 到达循环栅栏-A
Thread-1 通过循环栅栏-A
Thread-0 通过循环栅栏-A
Thread-2 通过循环栅栏-A
Thread-2 到达循环栅栏-B
Thread-0 到达循环栅栏-B
Thread-1 到达循环栅栏-B
Thread-1 通过循环栅栏-B
Thread-0 通过循环栅栏-B
Thread-2 通过循环栅栏-B

  从输出结果可以看出,与线程启动顺序无关,所有线程都是到达栅栏位置然后继续运行,到达栅栏线程的多少取决于CyclicBarrier实例化是指定的栅栏数量。

  源码分析:

package java.util.concurrent;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

public class CyclicBarrier {
    // 
    private static class Generation {
        boolean broken = false;
    }
	// 守卫栅栏进入的锁.
    private final ReentrantLock lock = new ReentrantLock();
    // 等待条件.
    private final Condition trip = lock.newCondition();
    // 总共需要等待的线程数.
    private final int parties;
    // 所有等待线程都到达时执行该命令.
    private final Runnable barrierCommand;
    // Generation.
    private Generation generation = new Generation();
    // 在等待栅栏的数量.
    private int count;
	// 下一栅栏.
    private void nextGeneration() {
        // 唤醒所有正在等待的吃的人.
        trip.signalAll();
       	// 重置部分数据.
        count = parties;
        generation = new Generation();
    }
	// 打破栅栏.
    private void breakBarrier() {
        generation.broken = true;
        count = parties;
        trip.signalAll();
    }
	// 等待线程.
    private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            final Generation g = generation;
			// 屏障已被破坏.抛出异常.
            if (g.broken)
                throw new BrokenBarrierException();
			// 线程响应中断.
            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }
			// 当前线程到达后剩余线程数.
            int index = --count;
            // 线程已全部到达.
            if (index == 0) {  // tripped
                boolean ranAction = false;
                try {
                    final Runnable command = barrierCommand;
                    if (command != null)
                        command.run();
                    ranAction = true;
                    // 生成新一代唤醒等待线程,重置count、parties.
                    nextGeneration();
                    return 0;
                } finally {
                    // 执行失败,打破栅栏.
                    if (!ranAction)
                        breakBarrier();
                }
            }
            // 
            for (;;) {
                // 设置线程阻塞.
                try {
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        // We're about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }
				// 栅栏被打破,抛出异常.
                if (g.broken)
                    throw new BrokenBarrierException();

                if (g != generation)
                    return index;
				// 超时,打破栅栏,抛出异常.
                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }
	// Construtor.
    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }
	// Construtor.
    public CyclicBarrier(int parties) {
        this(parties, null);
    }
	// 获取需要等待的线程数.
    public int getParties() {
        return parties;
    }
	// 阻塞线程.
    public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen
        }
    }
	// 带超时时间阻塞线程.
    public int await(long timeout, TimeUnit unit)
        throws InterruptedException,
               BrokenBarrierException,
               TimeoutException {
        return dowait(true, unit.toNanos(timeout));
    }
	// 栅栏是否已被破解.
    public boolean isBroken() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return generation.broken;
        } finally {
            lock.unlock();
        }
    }
	// 重置栅栏数据和状态,CyclicBarrier
    public void reset() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            // 打破当前栅栏信息.
            breakBarrier();  
            // 开始处理下一栅栏信息。
            nextGeneration(); // start a new generation
        } finally {
            lock.unlock();
        }
    }
	// 已达到等待线程数量.
    public int getNumberWaiting() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return parties - count;
        } finally {
            lock.unlock();
        }
    }
}

  从“演示示例“到”源码分析“,CyclicBarrier的使用以及源码相对比较简单,“源码分析”中是CyclicBarrier全部API。

  注:文中源码均来自于JDK1.8版本,不同版本间可能存在差异。

  如果有哪里有不明白或不清楚的内容,欢迎留言哦!

猜你喜欢

转载自blog.csdn.net/securitit/article/details/106984650