源码阅读之CyclicBarrier

源码阅读是基于JDK7,本篇主要涉及CyclicBarrier常用方法源码分析。Java技术分享微信公众号JavaQ,欢迎围观吐槽,最新文章分享公众号同步更新!

1.概述
CyclicBarrier是一个同步辅助类,它允许一组线程互相等待,直到所有线程都到达某个公共屏障点(也可以叫同步点),即相互等待的线程都完成调用await方法,所有被屏障拦截的线程才会继续运行await方法后面的程序。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时CyclicBarrier很有用。因为该屏障点在释放等待线程后可以重用,所以称它为循环的屏障点。CyclicBarrier支持一个可选的Runnable命令,在一组线程中的最后一个线程到达屏障点之后(但在释放所有线程之前),该命令只在所有线程到达屏障点之后运行一次,并且该命令由最后一个进入屏障点的线程执行。

2.使用样例
下面的代码演示了CyclicBarrier简单使用的样例。

public class CyclicBarrierDemo {

    @Test
    public void test() {
        final CyclicBarrier barrier = new CyclicBarrier(2, myThread);
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    System.out.println(Thread.currentThread().getName());
                    barrier.await();
                    System.out.println(Thread.currentThread().getName());
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }, "thread1").start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    System.out.println(Thread.currentThread().getName());
                    barrier.await();
                    System.out.println(Thread.currentThread().getName());
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }, "thread2").start();
    }

    Thread myThread = new Thread(new Runnable() {
        @Override
        public void run() {
            System.out.println("myThread");
        }
    }, "thread3");
}

输出结果如下所示:

thread1
thread2
myThread
thread2
thread1

3.数据结构
CyclicBarrier中声明了如下一些属性及变量:

private final ReentrantLock lock = new ReentrantLock();
private final Condition trip = lock.newCondition();
private final int parties;
private final Runnable barrierCommand;
private Generation generation = new Generation();
private int count;

(1)lock用于保护屏障入口的锁;
(2)trip线程等待条件;
(3)parties参与等待的线程数;
(4)barrierCommand当所有线程到达屏障点之后,首先执行的命令;
(5)count实际中仍在等待的线程数,每当有一个线程到达屏障点,count值就会减一;当一次新的运算开始后,count的值被重置为parties。

4.构造方法
提供了两个构造函数可供使用。

    //创建一个CyclicBarrier实例,parties指定参与相互等待的线程数,
    //barrierAction指定当所有线程到达屏障点之后,首先执行的操作,该操作由最后一个进入屏障点的线程执行。
    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

    //创建一个CyclicBarrier实例,parties指定参与相互等待的线程数
    public CyclicBarrier(int parties) {
        this(parties, null);
    }

5.getParties方法

    //返回参与相互等待的线程数
    public int getParties() {
        return parties;
    }

6.await方法

    //该方法被调用时表示当前线程已经到达屏障点,当前线程阻塞进入休眠状态
    //直到所有线程都到达屏障点,当前线程才会被唤醒
    public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen;
        }
    }

    //该方法被调用时表示当前线程已经到达屏障点,当前线程阻塞进入休眠状态
    //在timeout指定的超时时间内,等待其他参与线程到达屏障点
    //如果超出指定的等待时间,则抛出TimeoutException异常,如果该时间小于等于零,则此方法根本不会等待
    public int await(long timeout, TimeUnit unit)
        throws InterruptedException,
               BrokenBarrierException,
               TimeoutException {
        return dowait(true, unit.toNanos(timeout));
    }

    private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            final Generation g = generation;

            if (g.broken)
                throw new BrokenBarrierException();

            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }

           int index = --count;
           if (index == 0) {  // tripped
               boolean ranAction = false;
               try {
                   final Runnable command = barrierCommand;
                   if (command != null)
                       command.run();
                   ranAction = true;
                   //当所有参与的线程都到达屏障点,立即去唤醒所有处于休眠状态的线程,恢复执行
                   nextGeneration();
                   return 0;
               } finally {
                   if (!ranAction)
                       breakBarrier();
               }
           }

            // loop until tripped, broken, interrupted, or timed out
            for (;;) {
                try {
                    if (!timed)
                        //让当前执行的线程阻塞,处于休眠状态
                        trip.await();
                    else if (nanos > 0L)
                        //让当前执行的线程阻塞,在超时时间内处于休眠状态
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        // We're about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }

                if (g.broken)
                    throw new BrokenBarrierException();

                if (g != generation)
                    return index;

                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }

    //唤醒所有处于休眠状态的线程,恢复执行
    //重置count值为parties
    //重置中断状态为false
    private void nextGeneration() {
        // signal completion of last generation
        trip.signalAll();
        // set up next generation
        count = parties;
        generation = new Generation();
    }

    //唤醒所有处于休眠状态的线程,恢复执行
    //重置count值为parties
    //重置中断状态为true
    private void breakBarrier() {
        generation.broken = true;
        count = parties;
        trip.signalAll();
    }

这个等待的await方法,其实是使用ReentrantLock和Condition控制实现的。

7.isBroken方法

    public boolean isBroken() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return generation.broken;
        } finally {
            lock.unlock();
        }
    }

判断此屏障是否处于中断状态。如果因为构造或最后一次重置而导致中断或超时,从而使一个或多个参与者摆脱此屏障点,或者因为异常而导致某个屏障操作失败,则返回true;否则返回false。

8.reset方法

    //将屏障重置为其初始状态。
    public void reset() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            //唤醒所有等待的线程继续执行,并设置屏障中断状态为true
            breakBarrier();   // break the current generation
            //唤醒所有等待的线程继续执行,并设置屏障中断状态为false
            nextGeneration(); // start a new generation
        } finally {
            lock.unlock();
        }
    }

9.getNumberWaiting方法

    //返回当前在屏障处等待的参与者数目,此方法主要用于调试和断言。
    public int getNumberWaiting() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return parties - count;
        } finally {
            lock.unlock();
        }
    }

小结:
1.CyclicBarrier可以用于多线程计算数据,最后合并计算结果的应用场景。
2.这个等待的await方法,其实是使用ReentrantLock和Condition控制实现的。

猜你喜欢

转载自tianruirui.iteye.com/blog/2318119