机器学习-二分类SVC中的样本不均衡问题:重要参数class_weight

样本不均衡问题

对于分类问题,永远都逃不过的一个痛点就是样本不均衡问题。样本不均衡是指在一组数据集中,标签的一类天生占有很大的比例,但我们有着捕捉出某种特定的分类的需求的状况。比如,我们现在要对潜在犯罪者和普通人进行分类,潜在犯罪者占总人口的比例是相当低的,也许只有2%左右,98%的人都是普通人,而我们的目标是要捕获出潜在犯罪者。这样的标签分布会带来许多问题。
首先,分类模型天生会倾向于多数的类,让多数类更容易被判断正确,少数类被牺牲掉。因为对于模型而言,样本量越大的标签可以学习的信息越多,算法就会更加依赖于从多数类中学到的信息来进行判断。如果我们希望捕获少数类,模型就会失败。其次,模型评估指标会失去意义。这种分类状况下,即便模型什么也不做,全把所有人都当成不会犯罪的人,准确率也能非常高,这使得模型评估指标accuracy变得毫无意义,根本无法达到我们的“要识别出会犯罪的人”的建模目的。
所以现在,我们首先要让算法意识到数据的标签是不均衡的,通过施加一些惩罚或者改变样本本身,来让模型向着捕获少数类的方向建模。然后,我们要改进我们的模型评估指标,使用更加针对于少数类的指标来优化模型。
要解决第一个问题,可以采用上采样下采样的方法。但这些采样方法会增加样本的总数,对于支持向量机这个样本总是对计算速度影响巨大的算法来说,我们完全不想轻易地增加样本数量。况且,支持向量机中的决策仅仅受决策边界的影响,而决策边界又仅仅受到参数C和支持向量的影响,单纯地增加样本数量不仅会增加计算时间,可能还会增加无数对决策边界无影响的样本点。因此在支持向量机中,我们要大力依赖我们调节样本均衡的参数:SVC类中的class_weight和接口fit中可以设定的sample_weight。
在逻辑回归中,参数class_weight默认None,此模式表示假设数据集中的所有标签是均衡的,即自动认为标签的比例是1:1。所以当样本不均衡的时候,我们可以使用形如{“标签的值1”:权重1,“标签的值2”:权重2}的字典来输入真实的样本标签比例,来让算法意识到样本是不平衡的。或者使
用”balanced“模式,直接使用n_samples/(n_classes * np.bincount(y))作为权重,可以比较好地修正我们的样本不均衡情况。
但在SVM中,我们的分类判断是基于决策边界的,而最终决定究竟使用怎样的支持向量和决策边界的参数是参数C,所以所有的样本均衡都是通过参数C来调整的。

SVC的参数:class_weight

可输入字典或者"balanced”,可不填,默认None
对SVC,将类i的参数C设置为class_weight [i] * C。如果没有给出具体的class_weight,则所有类都被假设为占有相同的权重1,模型会根据数据原本的状况去训练。如果希望改善样本不均衡状况,请输入形如{“标签的值1”:权重1,“标签的值2”:权重2}的字典,则参数C将会自动被设为:
标签的值1的C:权重1 * C,标签的值2的C:权重2*C
或者,可以使用“balanced”模式,这个模式使用y的值自动调整与输入数据中的类频率成反比的权重为n_samples/(n_classes * np.bincount(y))

SVC的接口fit的参数:sample_weight

数组,结构为 (n_samples, ),必须对应输入fit中的特征矩阵的每个样本。
每个样本在fit时的权重,让权重 * 每个样本对应的C值来迫使分类器强调设定的权重更大的样本。通常,较大的权重加在少数类的样本上,以迫使模型向着少数类的方向建模。
通常来说,这两个参数我们只选取一个来设置。如果我们同时设置了两个参数,则C会同时受到两个参数的影响,即 class_weight中设定的权重 * sample_weight中设定的权重 * C。
我们接下来就来看看如何使用这个参数。
首先,我们来自建一组样本不平衡的数据集。我们在这组数据集上建两个SVC模型,一个设置有class_weight参数,一个不设置class_weight参数。我们对两个模型分别进行评估并画出他们的决策边界,以此来观察class_weight带来的效果。

  1. 导入需要的库和模块
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_blobs
  1. 创建样本不均衡的数据集
class_1 = 500 #类别1有500个样本
class_2 = 50 #类别2只有50个
centers = [[0.0, 0.0], [2.0, 2.0]] #设定两个类别的中心
clusters_std = [1.5, 0.5] #设定两个类别的方差,通常来说,样本量比较大的类别会更加松散
X, y = make_blobs(n_samples=[class_1, class_2],
                  centers=centers,
                  cluster_std=clusters_std,
                  random_state=0, shuffle=False)

#看看数据集长什么样
plt.scatter(X[:, 0], X[:, 1], c=y, cmap="rainbow",s=10);
#其中红色点是少数类,紫色点是多数类

在这里插入图片描述
3. 在数据集上分别建模

#不设定class_weight
clf = SVC(kernel='linear', C=1.0)
clf.fit(X, y)
#设定class_weight
wclf = SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y)
#给两个模型分别打分看看,这个分数是accuracy准确度
clf.score(X,y)
0.9418181818181818
wclf.score(X,y)
0.9127272727272727

可以看出,从准确率的角度来看,不做样本平衡的时候准确率反而更高,做了样本平衡准确率反而变低了,这是因为做了样本平衡后,为了要更有效地捕捉出少数类,模型误伤了许多多数类样本,而多数类被分错的样本数量 > 少数类被分类正确的样本数量,使得模型整体的精确性下降。现在,如果我们的目的是模型整体的准确率,那我们就要拒绝样本平衡,使class_weight被设置之前的模型。
然而在现实中,我们往往都在追求捕捉少数类,因为在很多情况下,将少数类判断错的代价是巨大的。比如我们之前提到的,判断潜在犯罪者和普通人的例子,如果我们没有能够识别出潜在犯罪者,那么这些人就可能去危害社会,造成恶劣影响,但如果我们把普通人错认为是潜在犯罪者,我们也许只是需要增加一些监控和人为甄别的成本。所以对我们来说,我们宁愿把普通人判错,也不想放过任何一个潜在犯罪者。我们希望不惜一切代价来捕获少数类,或者希望捕捉出尽量多的少数类,那我们就必须使用class_weight设置后的模型。

猜你喜欢

转载自blog.csdn.net/gracejpw/article/details/103054668