蚁群算法原理介绍,算法框架以及代码实现

在这里插入图片描述

直观理解

  1. 假设一群蚂蚁从起点往终点走
  2. 起点到终点存在多条路径(如上图)
  3. 蚂蚁面临路径选择时,在最初会随机选择。因此刚开始蚂蚁们有很大可能把所有的路径都走一遍
  4. 蚁群的特性是,走路过程里会留下信息素。因此一定时间内,几乎所有路径都会留下信息素
  5. 那么在单位时间内,所有路径中,那条最短的路径,留下的信息素会更多,即信息素浓度更高
  6. 蚂蚁再次面临选择时,会优先考虑信息素浓度高的路径走。这也就是起点到终点的最优(最短)路径

核心公式

1 路径选择公式(转移公式)

P i j k ( t ) = { [ τ i j ( t ) ] α [ η i j ( t ) ] β s a l l o w k [ τ i s ( t ) ] α [ η i s ( t ) ] β s allow k 0 s  allow  k P_{i j}^{k}(t)=\left\{\begin{array}{ll} \frac{\left[\tau_{i j}(t)\right]^{\alpha} \cdot\left[\eta_{i j}(t)\right]^{\beta}}{\sum_{s \in a l l o w_{k}}\left[\tau_{i s}(t)\right]^{\alpha} \cdot\left[\eta_{i s}(t)\right]^{\beta}} & s \in \operatorname{allow}_{k} \\ 0 & s \notin \text { allow }_{k} \end{array}\right.

P i j k ( t ) P_{ij}^k(t) 表示t时刻,第k只蚂蚁,从i点走向j点的概率
s s 是k能访问的所有点
τ i j ( t ) \tau_{ij}(t) 是t时刻,i点到j点路径上的信息素浓度
η i j ( t ) \eta_{ij}(t) 是t时刻,i点到j点路径的长度的倒数
α , β \alpha, \beta 分别是参数,可人为调整

2 信息素浓度更新公式

{ τ i j ( t + 1 ) = ( 1 ρ ) τ i j ( t ) + Δ τ i j Δ τ i j = k = 1 n δ τ i j k \left\{\begin{array}{l} \tau_{i j}(t+1)=(1-\rho) \tau_{i j}(t)+\Delta \tau_{i j} \\ \Delta \tau_{i j}=\sum_{k=1}^{n} \delta \tau_{i j}^{k} \end{array}\right.

ρ \rho 信息挥发因子, 1 ρ 1-\rho 表示信息素残留因子
Δ τ i j \Delta \tau_{i j} 信息素的更新量
δ τ i j k \delta \tau_{i j}^{k} 第k只蚂蚁在i到j路径上信息素的更新量

3 单只蚂蚁释放信息素的增量公式

Δ τ i j k = { Q / L k ,  第k只蚂蚁从城市i访问城市j  0 ,  其他  \Delta \tau_{i j}^{k}=\left\{\begin{array}{ll} Q / L_{k}, & \text { 第k只蚂蚁从城市i访问城市j } \\ 0, & \text { 其他 } \end{array}\right.

L k L_k 是蚂蚁自身完成从起点到终点走过的全部距离
Q蚂蚁身上的总的信息素

算法框架

  1. 初始化蚂蚁的出生位置
  2. 蚂蚁行走,遇到选择时,根据选择策略(如轮盘赌)进行选择路径,直到走到终点。全部走完后,看最优蚂蚁走的路径是否满足条件,满足退出,否则进入第三步
  3. 更新每个路径的信息素
  4. 蚁群重新选择起点,开始新一轮探索

代码

# -*- coding: utf-8 -*-
import random
import copy
import time
import sys
import math
import tkinter #//GUI模块
import threading
from functools import reduce
 
 
# 参数
'''
ALPHA:信息启发因子,值越大,则蚂蚁选择之前走过的路径可能性就越大
      ,值越小,则蚁群搜索范围就会减少,容易陷入局部最优
BETA:Beta值越大,蚁群越就容易选择局部较短路径,这时算法收敛速度会
     加快,但是随机性不高,容易得到局部的相对最优
'''
(ALPHA, BETA, RHO, Q) = (1.0,2.0,0.5,100.0)
# 城市数,蚁群
(city_num, ant_num) = (50,50)
distance_x = [
    178,272,176,171,650,499,267,703,408,437,491,74,532,
    416,626,42,271,359,163,508,229,576,147,560,35,714,
    757,517,64,314,675,690,391,628,87,240,705,699,258,
    428,614,36,360,482,666,597,209,201,492,294]
distance_y = [
    170,395,198,151,242,556,57,401,305,421,267,105,525,
    381,244,330,395,169,141,380,153,442,528,329,232,48,
    498,265,343,120,165,50,433,63,491,275,348,222,288,
    490,213,524,244,114,104,552,70,425,227,331]
#城市距离和信息素
distance_graph = [ [0.0 for col in range(city_num)] for raw in range(city_num)] # 全0 numpy赋值更方便
pheromone_graph = [ [1.0 for col in range(city_num)] for raw in range(city_num)] # 全1

print(distance_graph)
print(pheromone_graph)

#----------- 蚂蚁 -----------
class Ant(object):
 
    # 初始化
    def __init__(self,ID):
        
        self.ID = ID                 # ID
        self.__clean_data()          # 随机初始化出生点
 
    # 初始数据
    def __clean_data(self):
    
        self.path = []               # 当前蚂蚁的路径           
        self.total_distance = 0.0    # 当前路径的总距离
        self.move_count = 0          # 移动次数
        self.current_city = -1       # 当前停留的城市
        self.open_table_city = [True for i in range(city_num)] # 探索城市的状态
        
        city_index = random.randint(0,city_num-1) # 随机初始出生点
        self.current_city = city_index
        self.path.append(city_index)
        self.open_table_city[city_index] = False
        self.move_count = 1
    
    # 选择下一个城市
    def __choice_next_city(self):
        
        next_city = -1
        select_citys_prob = [0.0 for i in range(city_num)]  #存储去下个城市的概率
        total_prob = 0.0
 
        # 获取去下一个城市的概率
        for i in range(city_num):
            if self.open_table_city[i]: # 能否被访问
                try :
                    # 计算概率:与信息素浓度成正比,与距离成反比
                    select_citys_prob[i] = pow(pheromone_graph[self.current_city][i], ALPHA) * pow((1.0/distance_graph[self.current_city][i]), BETA)
                    total_prob += select_citys_prob[i]
                except ZeroDivisionError as e:
                    print ('Ant ID: {ID}, current city: {current}, target city: {target}'.format(ID = self.ID, current = self.current_city, target = i))
                    sys.exit(1)
        
        # 轮盘选择城市
        if total_prob > 0.0:
            # 产生一个随机概率,0.0-total_prob
            temp_prob = random.uniform(0.0, total_prob)
            for i in range(city_num):
                if self.open_table_city[i]:
                    # 轮次相减
                    temp_prob -= select_citys_prob[i]
                    if temp_prob < 0.0:
                        next_city = i
                        break
 
        # 未从概率产生,顺序选择一个未访问城市
        # if next_city == -1:
        #     for i in range(city_num):
        #         if self.open_table_city[i]:
        #             next_city = i
        #             break
 
        if (next_city == -1):
            next_city = random.randint(0, city_num - 1)
            while ((self.open_table_city[next_city]) == False):  # if==False,说明已经遍历过了
                next_city = random.randint(0, city_num - 1)
 
        # 返回下一个城市序号
        return next_city
    
    # 计算路径总距离
    def __cal_total_distance(self):
        
        temp_distance = 0.0

        for i in range(1, city_num):
            start, end = self.path[i], self.path[i-1]
            temp_distance += distance_graph[start][end]
 
        # 回路
        end = self.path[0]
        temp_distance += distance_graph[start][end]
        self.total_distance = temp_distance
        
    
    # 移动操作
    def __move(self, next_city):
        
        self.path.append(next_city)
        self.open_table_city[next_city] = False
        self.total_distance += distance_graph[self.current_city][next_city]
        self.current_city = next_city
        self.move_count += 1
        
    # 搜索路径
    def search_path(self):
 
        # 初始化数据
        self.__clean_data()
 
        # 搜素路径,遍历完所有城市为止
        while self.move_count < city_num:
            # 移动到下一个城市
            next_city =  self.__choice_next_city()
            self.__move(next_city)
 
        # 计算路径总长度
        self.__cal_total_distance()
 
#----------- TSP问题 -----------
        
class TSP(object):
 
    def __init__(self, root, width = 800, height = 600, n = city_num):
 
        # 创建画布
        self.root = root                               
        self.width = width      
        self.height = height
        # 城市数目初始化为city_num
        self.n = n
        # tkinter.Canvas
        self.canvas = tkinter.Canvas(
                root,
                width = self.width,
                height = self.height,
                bg = "#EBEBEB",             # 背景白色 
                xscrollincrement = 1,
                yscrollincrement = 1
            )
        self.canvas.pack(expand = tkinter.YES, fill = tkinter.BOTH)
        self.title("TSP蚁群算法(n:初始化 e:开始搜索 s:停止搜索 q:退出程序)")
        self.__r = 5
        self.__lock = threading.RLock()     # 线程锁
 
        self.__bindEvents()
        self.new()
 
        # 计算城市之间的距离 这也可以用numpy计算
        for i in range(city_num):
            for j in range(city_num):
                temp_distance = pow((distance_x[i] - distance_x[j]), 2) + pow((distance_y[i] - distance_y[j]), 2)
                temp_distance = pow(temp_distance, 0.5)
                distance_graph[i][j] =float(int(temp_distance + 0.5))
 
    # 按键响应程序
    def __bindEvents(self):
 
        self.root.bind("q", self.quite)        # 退出程序
        self.root.bind("n", self.new)          # 初始化
        self.root.bind("e", self.search_path)  # 开始搜索
        self.root.bind("s", self.stop)         # 停止搜索
 
    # 更改标题
    def title(self, s):
 
        self.root.title(s)
 
    # 初始化
    def new(self, evt = None):
 
        # 停止线程
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()
 
        self.clear()     # 清除信息 
        self.nodes = []  # 节点坐标
        self.nodes2 = [] # 节点对象
 
        # 初始化城市节点
        for i in range(len(distance_x)):
            # 在画布上随机初始坐标
            x = distance_x[i]
            y = distance_y[i]
            self.nodes.append((x, y))
            # 生成节点椭圆,半径为self.__r
            node = self.canvas.create_oval(x - self.__r,
                    y - self.__r, x + self.__r, y + self.__r,
                    fill = "#ff0000",      # 填充红色
                    outline = "#000000",   # 轮廓白色
                    tags = "node",
                )
            self.nodes2.append(node)
            # 显示坐标
            self.canvas.create_text(x,y-10,              # 使用create_text方法在坐标(302,77)处绘制文字
                    text = '('+str(x)+','+str(y)+')',    # 所绘制文字的内容
                    fill = 'black'                       # 所绘制文字的颜色为灰色
                )
            
        # 顺序连接城市
        #self.line(range(city_num))
        
        # 初始城市之间的距离和信息素
        for i in range(city_num):
            for j in range(city_num):
                pheromone_graph[i][j] = 1.0
                
        self.ants = [Ant(ID) for ID in range(ant_num)]  # 初始蚁群
        self.best_ant = Ant(-1)                          # 初始最优解
        self.best_ant.total_distance = 1 << 31           # 初始最大距离
        self.iter = 1                                    # 初始化迭代次数 
            
    # 将节点按order顺序连线
    def line(self, order):
        # 删除原线
        self.canvas.delete("line")
        def line2(i1, i2):
            p1, p2 = self.nodes[i1], self.nodes[i2]
            self.canvas.create_line(p1, p2, fill = "#000000", tags = "line")
            return i2
        
        # order[-1]为初始值
        reduce(line2, order, order[-1])
 
    # 清除画布
    def clear(self):
        for item in self.canvas.find_all():
            self.canvas.delete(item)
 
    # 退出程序
    def quite(self, evt):
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()
        self.root.destroy()
        print (u"\n程序已退出...")
        sys.exit()
 
    # 停止搜索
    def stop(self, evt):
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()
        
    # 开始搜索
    def search_path(self, evt = None):
 
        # 开启线程
        self.__lock.acquire()
        self.__running = True
        self.__lock.release()
        
        while self.__running:
            # 遍历每一只蚂蚁
            for ant in self.ants:
                # 搜索一条路径
                ant.search_path()
                # 与当前最优蚂蚁比较
                if ant.total_distance < self.best_ant.total_distance:
                    # 更新最优解
                    self.best_ant = copy.deepcopy(ant)
            # 更新信息素
            self.__update_pheromone_gragh()
            print (u"迭代次数:",self.iter,u"最佳路径总距离:",int(self.best_ant.total_distance))
            # 连线
            self.line(self.best_ant.path)
            # 设置标题
            self.title("TSP蚁群算法(n:随机初始 e:开始搜索 s:停止搜索 q:退出程序) 迭代次数: %d" % self.iter)
            # 更新画布
            self.canvas.update()
            self.iter += 1
 
    # 更新信息素
    def __update_pheromone_gragh(self):
 
        # 获取每只蚂蚁在其路径上留下的信息素
        temp_pheromone = [[0.0 for col in range(city_num)] for raw in range(city_num)]
        for ant in self.ants:
            for i in range(1,city_num):
                start, end = ant.path[i-1], ant.path[i]
                # 在路径上的每两个相邻城市间留下信息素,与路径总距离反比
                temp_pheromone[start][end] += Q / ant.total_distance
                temp_pheromone[end][start] = temp_pheromone[start][end]
 
        # 更新所有城市之间的信息素,旧信息素衰减加上新迭代信息素
        for i in range(city_num):
            for j in range(city_num):
                pheromone_graph[i][j] = pheromone_graph[i][j] * RHO + temp_pheromone[i][j]
 
    # 主循环
    def mainloop(self):
        self.root.mainloop()
 
#----------- 程序的入口处 -----------
                
if __name__ == '__main__':
 
    TSP(tkinter.Tk()).mainloop()
   

参考1
参考2

猜你喜欢

转载自blog.csdn.net/Xurui_Luo/article/details/106690382