多元高斯分布的一些性质

多元高斯分布

p ( x m , Σ ) = 1 ( 2 π ) D Σ e 1 2 ( x m ) Σ 1 ( x m ) p(x|m,\Sigma) = \frac{1}{\sqrt{(2\pi)^{D}|\Sigma|}}e^{-\frac{1}{2}(x-m)^\top \Sigma^{-1}(x-m)}
或者
p ( x m , Σ ) = ( 2 π ) D / 2 Σ 1 / 2 exp ( 1 2 ( x m ) Σ 1 ( x m ) ) p(x|m,\Sigma) = (2\pi)^{-D/2}|\Sigma|^{-1/2}\exp \left(-\frac{1}{2}(x-m)^\top \Sigma^{-1}(x-m)\right)
其中 x , m R D , Σ R D × D x,m \in R^{D}, \Sigma \in R^{D\times D} .

记为 x N ( m , Σ ) x\sim N(m,\Sigma) .


边际分布

假设 x , y x,y 为联合高斯随机变量:
[ x y ] N ( [ μ x μ y ] , [ A C C D ] ) = N ( [ μ x μ y ] , [ A ^ C ^ C ^ D ^ ] 1 ) \left[ \begin{array}{c} x\\ y \end{array} \right] \sim N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} A & C\\ C^\top & D \end{array} \right] \right)= N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} \hat{A} & \hat{C}\\ \hat{C}^\top & \hat{D} \end{array} \right]^{-1} \right)

x N ( μ x , A ) x \sim N(\mu_x, A)

条件分布

假设 x , y x,y 为联合高斯随机变量:
[ x y ] N ( [ μ x μ y ] , [ A C C D ] ) = N ( [ μ x μ y ] , [ A ^ C ^ C ^ D ^ ] 1 ) \left[ \begin{array}{c} x\\ y \end{array} \right] \sim N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} A & C\\ C^\top & D \end{array} \right] \right)= N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} \hat{A} & \hat{C}\\ \hat{C}^\top & \hat{D} \end{array} \right]^{-1} \right)

x y N ( μ x + C B 1 ( y μ y ) , A C B 1 C ) x| y \sim N(\mu_x + CB^{-1}(y-\mu_y), A - CB^{-1}C^\top)

乘积

两个高斯分布的乘积为未归一化的高斯分布:
N ( x a , A ) N ( y b , B ) = Z 1 N ( x c , C ) N(x|a,A)N(y|b,B) = Z^{-1}N(x|c,C)
其中
c = C ( A 1 a + B 1 b ) C = ( A 1 + B 1 ) 1 Z = ( 2 π ) D / 2 A + B 1 / 2 exp ( 1 2 ( a b ) ( A + B ) 1 ( a b ) ) c = C(A^{-1}a + B^{-1}b) \\ C = (A^{-1} + B^{-1})^{-1} \\ Z = (2\pi)^{-D/2}|A+B|^{-1/2}\exp \left(-\frac{1}{2}(a-b)^\top (A+B)^{-1}(a-b)\right)

原创文章 338 获赞 621 访问量 50万+

猜你喜欢

转载自blog.csdn.net/itnerd/article/details/105613661