HFUT.计算方法(一) - Chp6 数值积分(一)

HFUT.计算方法(一) - Chp6 数值积分(一)



chp6.1 数值积分的基本概念

\[\int_a^b f(x)dx = \sum_{k = 0}^nA_kf(x) + R[f]\tag{1} \]

\(Eq.1\quad\)其中\({x_k}(k = 0, 1, …, n)\)为求积点,\({A_k(k = 0, 1, …, n)}\)为求积系数。\(R[f]\)为求积公式的余项。

  • 左矩形误差估计

    • 由于\(f(x) - f(a) = f(\xi_x)(x - a)\), 可得:
    • \[\begin{aligned} R[f] &=\int_{a}^{b} f(x) d x-f(a)(b-a) \\ &=\int_{a}^{b} f^{\prime}\left(\xi_{x}\right)(x-a) d x=\frac{(b-a)^{2}}{2} f^{\prime}(\xi) \quad \xi \in(a, b) \end{aligned}\]

  • 右矩形误差估计

    • \[\begin{aligned} R[f] &=-\frac{(b-a)^{2}}{2} f^{\prime}(\xi) \quad \xi \in(a, b) \end{aligned}\]

  • 中矩形误差估计

    • 由泰勒展开得到:

      \(f(x)=f\left(\frac{a+b}{2}\right)+f^{\prime}\left(\frac{a+b}{2}\right)\left(x-\frac{a+b}{2}\right)+\frac{f^{\prime \prime}\left(\xi_{x}\right)}{2}\left(x-\frac{a+b}{2}\right)^{2}\)

    • \(\int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)(b-a)=-\frac{f^{\prime \prime}(\eta)}{24}(b-a)^{3}, \quad \eta \in(a, b)\)

chp6.2 求积公式的代数精度

**定义 **若求积公式$$\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \sum_{k=0}^{n} A_{k} f\left(x_{k}\right)\end{aligned}$$对$$\begin{aligned}&f(x)=x^{i}(j=0,1,2, \cdots, m)\end{aligned}$$都精确成立,但对$$\begin{aligned}&f(x)=x^{m+1}\end{aligned}$$不精确成立,即:

\[\begin{aligned}&\int_{a}^{b} x^{j} d x=\sum_{k=0}^{n} A_{k} x_{k}^{j}, \quad j=0,1,2, \ldots, m \end{aligned} \]

则称此公式具有\(m\)次代数精度.

chp6.3 插值型数求积公式

Lagrange插值构造

对被积函数构造Lagrange插值多项式,可得:

\[\begin{aligned} &L_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) l_{k}(x)\\\end{aligned}\quad$$因此, $$\begin{aligned}& \int_{a}^{b} f(x) d x \approx \int_{a}^{b} L_{n}(x) d x\\ &=\int_{a}^{b}\left[\sum_{k=0}^{n} f\left(x_{k}\right) l_{k}(x)\right] d x=\sum_{k=0}^{n}\left[\int_{a}^{b} l_{k}(x) d x\right] f\left(x_{k}\right) \end{aligned}\]

若记$$A_{k}=\int_{a}^{b} l_{k}(x) d x\tag{2}$$

则有$$\begin{aligned}&\int_{a}^{b} f(x) d x \approx \sum_{k=0}^{n} A_{k} f\left(x_{k}\right)
\end{aligned}\tag{3}$$

误差分析

求积系数由\((2)\)式确定,求积公式为\((3)\)

\(f(x)\)而言,插值余项为\(f(x)-L_{n}(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1) !} \omega_{n+1}(x) \xi_{x} \in(a, b)\quad\) 可得

\(R[f]\)需要记住

\[\begin{aligned}R[f] &=\int_{a}^{b}\left[f(x)-L_{n}(x)\right] d x \\&=\frac{1}{(n+1) !} \int_{a}^{b} f^{(n+1)}\left(\xi_{x}\right) \omega_{n+1}(x) d x . \quad \xi_{x} \in(a, b)\end{aligned} \]

权函数构造

对于区间\([a, b]\)上的权函数为\(\rho\)的积分\(I = \int_a^b \rho(x)f(x)dx\),其中\(\rho(x)\)\([a, b]\)上的权函数。

将插值型求积公式\((2)\)式子中的\(A_k(x)\)的计算方法改变,得到:

\[A_k = \int_a^b\rho(x)l_k(x)dx \tag{4} \]

误差分析

\[R[f] = \frac{1}{(n + 1)!}\int_a^b\rho(x)f^{n + 1}(\xi_x)\omega_(n + 1)dx \]

Newton-Cotes公式

\[A_{k}=\int_{a}^{b} l_{k}(x) d x=\int_{a}^{b} \prod_{i=0}^{n} \frac{x-x_{i}}{x_{k}-x_{i}} d x \stackrel{ x_{i}=a+t h}{=} \frac{(-1)^{n-k} h}{k !(n-k) !} \int_{0}^{n} \prod_{i=0 \atop i \neq k}^{n}(t-i) d t \tag{5} \]

令$$C_{k}^{(n)}=\frac{1}{b-a} A_{k}=\frac{(-1)^{n-k}}{n k !(n-k) !} \int_{0}^{n} \prod_{i=0 \atop i \neq k}^{n}(t-i) d t, k=0,1, \ldots, n$$

则有$$\quad\int_{a}^{b} f(x) d x \approx(b-a) \sum_{k=0}^{n} C_{k}^{(n)} f\left(x_{k}\right)\tag{6}$$

Newton-Cotes公式,其中\(C_k^{(n)}\)Cotes系数

例题

解答

猜你喜欢

转载自www.cnblogs.com/litun/p/hfut_cm_chp6_1.html