学习笔记-linux性能优化实战-io性能篇-01linux文件系统是怎样工作的

1.linux文件系统是怎样工作的

文件系统,本身是对存储设备上的文件,进行组织管理的机制。组织方式不同,就会形成不同的文件系统。

Linux 文件系统为每个文件都分配两个数据结构,索引节点(indexnode)-被持久化存储到磁盘,和目录项(directoryentry)-内核维护的一个内存数据结构。它们主要用来记录文件的元信息和目录结构。

在 Linux 中一切皆文件。不仅普通的文件和目录,就连块设备、套接字、管道等,也都要通过统一的文件系统来管理

磁盘在执行文件系统格式化时,会被分成三个存储区域,超级块、索引节点区和数据块区。其中,超级块,存储整个文件系统的状态。索引节点区,用来存储索引节点。数据块区,则用来存储文件数据.

通过这张图,你可以看到,在 VFS 的下方,Linux 支持各种各样的文件系统,如 Ext4、XFS、NFS 等等。按照存储位置的不同,这些文件系统可以分为三类。第一类是基于磁盘的文件系统,也就是把数据直接存储在计算机本地挂载的磁盘中。常见的 Ext4、XFS、OverlayFS 等,都是这类文件系统。第二类是基于内存的文件系统,也就是我们常说的虚拟文件系统。这类文件系统,不需要任何磁盘分配存储空间,但会占用内存。我们经常用到的 /proc 文件系统,其实就是一种最常见的虚拟文件系统。此外,/sys 文件系统也属于这一类,主要向用户空间导出层次化的内核对象。第三类是网络文件系统,也就是用来访问其他计算机数据的文件系统,比如 NFS、SMB、iSCSI 等

把文件系统挂载到挂载点后,你就能通过挂载点,再去访问它管理的文件了。VFS 提供了一组标准的文件访问接口。这些接口以系统调用的方式,提供给应用程序使用.

文件读写方式的各种差异,导致 I/O 的分类多种多样。最常见的有,缓冲与非缓冲 I/O、直接与非直接 I/O、阻塞与非阻塞 I/O、同步与异步 I/O 等。 接下来,我们就详细看这四种分类。

无论缓冲 I/O 还是非缓冲 I/O,它们最终还是要经过系统调用来访问文件。而根据上一节内容,我们知道,系统调用后,还会通过页缓存,来减少磁盘的 I/O 操作.

直接 I/O、非直接 I/O,本质上还是和文件系统交互。如果是在数据库等场景中,你还会看到,跳过文件系统读写磁盘的情况,也就是我们通常所说的裸 I/O。

O_SYNC 或者 O_DSYNC 标志,就代表同步 I/O。如果设置了 O_DSYNC,就要等文件数据写入磁盘后,才能返回;而 O_SYNC,则是在 O_DSYNC 基础上,要求文件元数据也要写入磁盘后,才能返回。

在访问管道或者网络套接字时,设置了 O_ASYNC 选项后,相应的 I/O 就是异步 I/O。这样,内核会再通过 SIGIO 或者 SIGPOLL,来通知进程文件是否可读写。

比如非阻塞 I/O,通常会跟 select/poll 配合,用在网络套接字的 I/O 中。

你也应该可以理解,“Linux 一切皆文件”的深刻含义。无论是普通文件和块设备、还是网络套接字和管道等,它们都通过统一的 VFS 接口来访问。

-----------------------

性能观测:

1)容量


$ df -h /dev/sda1 
Filesystem      Size  Used Avail Use% Mounted on 
/dev/sda1        29G  3.1G   26G  11% / 


$ df -i /dev/sda1  //索引节点占据的磁盘空间  容量不足有可能是inode不足
Filesystem      Inodes  IUsed   IFree IUse% Mounted on 
/dev/sda1      3870720 157460 3713260    5% / 

2)缓存

用free或vmstat可观察页缓存的大小,free的cache,是页缓存和可回收slab缓存的和,可从/pric/meminfo直接得到他们的大小:


$ cat /proc/meminfo | grep -E "SReclaimable|Cached" 
Cached:           748316 kB 
SwapCached:            0 kB 
SReclaimable:     179508 kB 

内核使用 Slab 机制,管理目录项和索引节点的缓存。/proc/meminfo 只给出了 Slab 的整体大小,具体到每一种 Slab 缓存,还要查看 /proc/slabinfo 这个文件。


$ cat /proc/slabinfo | grep -E '^#|dentry|inode' 
# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavail> 
xfs_inode              0      0    960   17    4 : tunables    0    0    0 : slabdata      0      0      0 
... 
ext4_inode_cache   32104  34590   1088   15    4 : tunables    0    0    0 : slabdata   2306   2306      0hugetlbfs_inode_cache     13     13    624   13    2 : tunables    0    0    0 : slabdata      1      1      0 
sock_inode_cache    1190   1242    704   23    4 : tunables    0    0    0 : slabdata     54     54      0 
shmem_inode_cache   1622   2139    712   23    4 : tunables    0    0    0 : slabdata     93     93      0 
proc_inode_cache    3560   4080    680   12    2 : tunables    0    0    0 : slabdata    340    340      0 
inode_cache        25172  25818    608   13    2 : tunables    0    0    0 : slabdata   1986   1986      0 
dentry             76050 121296    192   21    1 : tunables    0    0    0 : slabdata   5776   5776      0 

这个界面中,dentry 行表示目录项缓存,inode_cache 行,表示 VFS 索引节点缓存,其余的则是各种文件系统的索引节点缓存。

/proc/slabinfo 的列比较多,具体含义你可以查询  man slabinfo。在实际性能分析中,我们更常使用 slabtop  ,来找到占用内存最多的缓存类型。

VFS 定义了一组所有文件系统都支持的数据结构和标准接口。这样,用户进程和内核中的其他子系统,就只需要跟 VFS 提供的统一接口进行交互。为了降低慢速磁盘对性能的影响,文件系统又通过页缓存、目录项缓存以及索引节点缓存,缓和磁盘延迟对应用程序的影响。

VFS 内部又通过目录项、索引节点、逻辑块以及超级块等数据结构,来管理文件。

目录项,记录了文件的名字,以及文件与其他目录项之间的目录关系。

索引节点,记录了文件的元数据。

逻辑块,是由连续磁盘扇区构成的最小读写单元,用来存储文件数据。

超级块,用来记录文件系统整体的状态,如索引节点和逻辑块的使用情况等。

其中,目录项是一个内存缓存;而超级块、索引节点和逻辑块,都是存储在磁盘中的持久化数据。

那么,进一步想,磁盘又是怎么工作的呢?又有哪些指标可以用来衡量它的性能呢?接下来,我就带你一起看看, Linux 磁盘 I/O 的工作原理。

发布了241 篇原创文章 · 获赞 25 · 访问量 4万+

猜你喜欢

转载自blog.csdn.net/u013755520/article/details/103785281