【Ecuación matemática】Transformada de Fourier y transformada de Laplace

circunvolución

  • Definición: f 1 ( x ) f_1(x)F1Tanto ( x ) como f_2(x) pueden transformarse en Fourier:
    • F 1 ( X ) ∗ F 2 ( X ) = ∫ − ∞ + ∞ F 1 ( X − ξ ) F 2 ( ξ ) re ξ = ∫ − ∞ + ∞ F 1 ( ξ ) F 2 ( X − ξ ) re ξ f_1(x)*f_2(x)=\int_{-\infty}^{+\infty}f_1(x-\xi)f_2(\xi)d\xi = \int_{-\infty}^{+ \infty}f_1(\xi)f_2(x-\xi)d\xiF1( X )F2( X )=+F1( Xξ ) f2( ξ ) re ξ=+F1( ξ ) f2( Xξ ) re ξ
    • F 1 ( t ) ∗ F 2 ( t ) = ∫ 0 tf 1 ( t − τ ) F 2 ( τ ) re τ = ∫ 0 tf 1 ( τ ) F 2 ( t − τ ) re τ f_1(t)* f_2(t)=\int_{0}^{t}f_1(t-\tau)f_2(\tau)d\tau = \int_{0}^{t}f_1(\tau)f_2(t-\tau )d\tauF1( t )F2( t )=0tF1( tt ) f2( t ) re t=0tF1( t ) f2( tt ) re t

Transformada de Fourier

  • Definición: función f ( x ) f(x)f ( x ) es suave por tramos, y en( − ∞ , + ∞ ) (-\infty,+\infty)( -∞ , _+ ) absolutamente integrable (∫ − ∞ + ∞ ∣ f ( x ) ∣ dx < + ∞ \int_{-\infty}^{+\infty}|f(x)|dx<+\infty+F ( X ) re X<+ ), transformada de Fourier:
    • F [ F ( X ) ] ( w ) = ∫ − ∞ ∞ F ( X ) eiwxdx F[f(x)](w)=\int_{-\infty}^{\infty}f(x)e^{ iwx}dxF [ f ( x )] ( w )=f ( x ) mii ancho x profundidadx
    • transformada inversa
      • F − 1 [ gramo ( w ) ] ( X ) = 1 2 π ∫ − ∞ ∞ gramo ( w ) eiwxdw F^{-1}[g(w)](x)=\frac{1}{2\pi }\int_{-\infty}^{\infty}g(w)e^{iwx}dwF1 [gramo(w)](X)=14:00 _1g ( w ) miyo ancho x profundidad_
  • naturaleza
    • linealidad
      • F [ α f 1 ( x ) + β f 2 ( x ) ] ( w ) = α F [ f 1 ( x ) ] ( w ) + β F [ f 2 ( x ) ] ( w ) F[\alpha f_1 (x)+\beta f_2(x)](w)=\alpha F[f_1(x)](w)+\beta F[f_2(x)](w)F [ α f1( X )+β f2( x )] ( w )=α F [ f1( x )] ( w )+βF [ f2( x )] ( w )
    • Teorema de convolución
      • F [ F 1 ( X ) ∗ F 2 ( X ) ] ( W ) = F [ F 1 ( X ) ] ( W ) ⋅ F [ F 2 ( X ) ] ( W ) F[f_1(x)*f_2( x)](w)=F[f_1(x)](w)\cdot F[f_2(x)](w)F [ f1( X )F2( x )] ( w )=F [ f1( x )] ( w )F [ f2( x )] ( w )
    • Propiedades diferenciales
      • F [ f ( norte ) ( x ) ] ( w ) = ( iw ) norte F [ f ( x ) ] ( w ) F[f^{(n)}(x)](w)=(iw)^nF [f(x)](w)F [ f( norte ) (x)](w)=( yo w )norteF[ f (x)](w)
    • Propiedades integrales
      • F [ ∫ − ∞ xf ( ξ ) re ξ ] = 1 iw F [ f ( x ) ] F[\int_{-\infty}^xf(\xi)d\xi]=\frac{1}{iw} F[f(x)]F [ xf ( ξ ) re ξ ]=yo w1F [ f ( x )]

Transformada de Laplace

  • Definición: función f ( t ) f(t)f ( t ) satisface la condición
    1. { 0 t < 0 f ( t ) t ≥ 0 \left\{\begin{matriz}0 & t<0 \\f(t) & t\geq 0 \end{matriz}\right.{ 0f ( t )t<0t0
    2. t → + ∞ t\rightarrow+\inftyt+ , hay constantesM > 0 , S 0 > 0 M>0, S_0>0METRO>0 ,S0>0 (S 0 S_0S0es f ( t ) f(t)Índice de crecimiento de f ( t ))f ( t
      ) ∣ ≤ METRO mi S 0 t , ( 0 < t < + ∞ ) |f(t)|\leq Me^{S_0t}, (0<t<+\ infinito)f ( t ) yo _S0t ,( 0<t<+ )
    • f(t) de f(t)Transformada de Laplace de f ( t ) :
      • L [ f ( t ) ] ( pags ) = ∫ 0 + ∞ f ( t ) mi − ptdt L[f(t)](p)=\int_0^{+\infty}f(t)e^{-pt }dtL [ f ( t )] ( pag )=0+f ( t ) mi- punto dt
    • transformada inversa
      • f ( t ) = 1 2 π yo ∫ β − yo ∞ β + yo ∞ gramo ( pag ) eptdpf(t)=\frac{1}{2\pi i}\int_{\beta-i\infty}^{ \beta+i\infty}g(p)e^{pt}dpf ( t )=2 pi1β - yo β + yog ( pag ) mipt dp
  • naturaleza
    • linealidad
      • L [ α F 1 ( t ) + β F 2 ( t ) ] ( pag ) = α L [ F 1 ( t ) ] ( pag ) + β L [ F 2 ( t ) ] ( pag ) L[\alpha f_1 (t)+\beta f_2(t)](p)=\alfa L[f_1(t)](p)+\beta L[f_2(t)](p)L [ α f1( t )+β f2( t )] ( pag )=αL [ f1( t )] ( pag )+β L [ f2( t )] ( pag )
    • Teorema de convolución
      • L [ F 1 ( t ) ∗ F 2 ( t ) ] = L [ F 1 ( t ) ] ⋅ L [ F 2 ( t ) ] L[f_1(t)*f_2(t)]=L[f_1(t) )]\cdot L[f_2(t)]L [ f1( t )F2( t )]=L [ f1( t )]L [ f2( t )]
    • Propiedades diferenciales
      • L [ f ′ ( t ) ] ( pag ) = pag L [ f ( t ) ] ( pag ) − f ( 0 ) L[f'(t)](p)=pL[f(t)](p) -f(0)L [ f (t)](pag)=pag L [ f ( t )] ( pag )f ( 0 )
      • L [ F ′ ′ ( t ) ] ( pags ) = pags 2 L [ F ( t ) ] ( pags ) − pf ( 0 ) − f ′ ( 0 ) L[f''(t)](p)=p ^2L[f(t)](p)-pf(0)-f'(0)L [ f′′ (t)](pag)=pags2 L[f(t)](pag)pag f ( 0 )F (0)
    • Propiedades integrales
      • L [ ∫ 0 tf ( τ ) re τ ] = 1 pags L [ f ( t ) ] L[\int_0^tf(\tau)d\tau]=\frac{1}{p}L[f(t) ]L [ 0tF ( τ ) re τ ]=pags1L [ f ( t )]

Supongo que te gusta

Origin blog.csdn.net/weixin_46143152/article/details/126484169
Recomendado
Clasificación