Manacher算法(转载,简单易懂)

很好理解的Manacher算法,转自知乎,最后有链接

中心扩展算法
我们先来看一个简单的算法,来解决这个问题。我们知道回文串一定是对称的,所以我们可以每次循环选择一个中心,进行左右扩展,判断左右字符是否相等即可。
在这里插入图片描述

由于存在奇数的字符串和偶数的字符串,所以我们需要从一个字符开始扩展,或者从两个字符之间开始扩展,所以总共有 n + n - 1 个中心。代码就很好写了,遍历每个中心,然后判断对称位置是否相等。
public String longestPalindrome(String s) {
if (s == null || s.length() < 1) return “”;
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i); //从一个字符扩展
int len2 = expandAroundCenter(s, i, i + 1); //从两个字符之间扩展
int len = Math.max(len1, len2);
//根据 i 和 len 求得字符串的相应下标
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}

private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt®) {
L–;
R++;
}
return R - L - 1;
}时间复杂度:O(n²)。两层循环,每层循环都是遍历每个字符。空间复杂度:O(1)。

Manacher’s Algorithm 马拉车算法。
马拉车算法 Manacher‘s Algorithm 是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性。
主要参考了下边链接进行讲解。

https://segmentfault.com/a/1190000008484167
https://blog.crimx.com/2017/07/06/manachers-algorithm/
http://ju.outofmemory.cn/entry/130005
https://articles.leetcode.com/longest-palindromic-substring-part-ii/

首先我们解决下奇数和偶数的问题,在每个字符间插入"#",并且为了使得扩展的过程中,到边界后自动结束,在两端分别插入 “^” 和 “$”,两个不可能在字符串中出现的字符,这样中心扩展的时候,判断两端字符是否相等的时候,如果到了边界就一定会不相等,从而出了循环。经过处理,字符串的长度永远都是奇数了。

&lt;img src="https://pic4.zhimg.com/50/v2-8c613143224234c971d9b5353a3f05aa_hd.jpg" data-caption="" data-size="normal" data-rawwidth="513" data-rawheight="72" class="origin_image zh-lightbox-thumb" width="513" data-original="https://pic4.zhimg.com/v2-8c613143224234c971d9b5353a3f05aa_r.jpg"/&gt;

首先我们用一个数组 P 保存从中心扩展的最大个数,而它刚好也是去掉 “#” 的原字符串的总长度。例如下图中下标是 6 的地方。可以看到 P[ 6 ] 等于 5,所以它是从左边扩展 5 个字符,相应的右边也是扩展 5 个字符,也就是 “#c#b#c#b#c#”。而去掉 # 恢复到原来的字符串,变成 “cbcbc”,它的长度刚好也就是 5。

在这里插入图片描述
求原字符串下标用 P 的下标 i 减去 P [ i ],再除以 2 ,就是原字符串的开头下标了。例如我们找到 P[ i ] 的最大值为 5 ,也就是回文串的最大长度是 5 ,对应的下标是 6 ,所以原字符串的开头下标是 (6 - 5 )/ 2 = 0 。所以我们只需要返回原字符串的第 0 到 第 (5 - 1)位就可以了。求每个 P [ i ]接下来是算法的关键了,它充分利用了回文串的对称性。我们用 C 表示回文串的中心,用 R 表示回文串的右边半径。所以 R = C + P[ i ] 。C 和 R 所对应的回文串是当前循环中 R 最靠右的回文串。让我们考虑求 P [ i ] 的时候,如下图。用 i_mirror 表示当前需要求的第 i 个字符关于 C 对应的下标。

&lt;img src="https://pic1.zhimg.com/50/v2-11f96d39d9648b7c146e49cdceb0854c_hd.jpg" data-caption="" data-size="normal" data-rawwidth="608" data-rawheight="189" class="origin_image zh-lightbox-thumb" width="608" data-original="https://pic1.zhimg.com/v2-11f96d39d9648b7c146e49cdceb0854c_r.jpg"/&gt;

我们现在要求 P [ i ], 如果是用中心扩展法,那就向两边扩展比对就行了。但是我们其实可以利用回文串 C 的对称性。i 关于 C 的对称点是 i_mirror ,P [ i_mirror ] = 3,所以 P [ i ] 也等于 3 。但是有三种情况将会造成直接赋值为 P [ i_mirror ] 是不正确的,下边一一讨论。

1. 超出了 R

在这里插入图片描述

当我们要求 P [ i ] 的时候,P [ mirror ] = 7,而此时 P [ i ] 并不等于 7 ,为什么呢,因为我们从 i 开始往后数 7 个,等于 22 ,已经超过了最右的 R ,此时不能利用对称性了,但我们一定可以扩展到 R 的,所以 P [ i ] 至少等于 R - i = 20 - 15 = 5,会不会更大呢,我们只需要比较 T [ R+1 ] 和 T [ R+1 ]关于 i 的对称点就行了,就像中心扩展法一样一个个扩展。

2. P [ i_mirror ] 遇到了原字符串的左边界

在这里插入图片描述

此时P [ i_mirror ] = 1,但是 P [ i ] 赋值成 1 是不正确的,出现这种情况的原因是 P [ i_mirror ] 在扩展的时候首先是 “#” == “#” ,之后遇到了 "^"和另一个字符比较,也就是到了边界,才终止循环的。而 P [ i ] 并没有遇到边界,所以我们可以继续通过中心扩展法一步一步向两边扩展就行了。

3. i 等于了 R
此时我们先把 P [ i ] 赋值为 0 ,然后通过中心扩展法一步一步扩展就行了。考虑 C 和 R 的更新就这样一步一步的求出每个 P [ i ],当求出的 P [ i ] 的右边界大于当前的 R 时,我们就需要更新 C 和 R 为当前的回文串了。因为我们必须保证 i 在 R 里面,所以一旦有更右边的 R 就要更新 R。
在这里插入图片描述
此时的 P [ i ] 求出来将会是 3 ,P [ i ] 对应的右边界将是 10 + 3 = 13,所以大于当前的 R ,我们需要把 C 更新成 i 的值,也就是 10 ,R 更新成 13。继续下边的循环。

public String preProcess(String s) {
    int n = s.length();
    if (n == 0) {
        return "^$";
    }
    String ret = "^";
    for (int i = 0; i < n; i++)
        ret += "#" + s.charAt(i);
    ret += "#$";
    return ret;
}

public String longestPalindrome2(String s) {
    String T = preProcess(s);
    int n = T.length();
    int[] P = new int[n];
    int C = 0, R = 0;
    for (int i = 1; i < n - 1; i++) {
        int i_mirror = 2 * C - i;
        if (R > i) {
            P[i] = Math.min(R - i, P[i_mirror]);// 防止超出 R
        } else {
            P[i] = 0;// 等于 R 的情况
        }

        while (T.charAt(i + 1 + P[i]) == T.charAt(i - 1 - P[i])) {
            P[i]++;
        }

        if (i + P[i] > R) {
            C = i;
            R = i + P[i];
        }
    }
    
    int maxLen = 0;
    int centerIndex = 0;
    for (int i = 1; i < n - 1; i++) {
        if (P[i] > maxLen) {
            maxLen = P[i];
            centerIndex = i;
        }
    }
    int start = (centerIndex - maxLen) / 2; //最开始讲的求原字符串下标
    return s.substring(start, start + maxLen);
}

时间复杂度:for 循环里边套了一层 while 循环,难道不是 O ( n² ),不!其实是 O(n)。我们想象一下整个过程,首先外层有一个 for 循环,所以每个字符会遍历一次,而当我们扩展的时候,每次都是从 R + 1 开始扩展,之后又会更新 R 。所以一些字符会遍历两次,但此时这些字符变到 R 的左边,所以不会遍历第三次了,因为我们每次从 R 的右边开始扩展。综上,每个字符其实最多遍历 2 次,所以依旧是线性的。当然如果字符串长度是 len ,由于扩展了字符串,这里的 n 其实是 2 * len + 3 ,所以是O(2 * len + 3),就是 O(len)。空间复杂度:O(n)。

作者:windliang
链接:https://www.zhihu.com/question/37289584/answer/465656849
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

发布了16 篇原创文章 · 获赞 1 · 访问量 271

猜你喜欢

转载自blog.csdn.net/weixin_44254608/article/details/104652310