tensorflow cnn实现mnist分类

前面学习了BP神经网络的基础构造和CNN卷积神经网络,我们对softmax和cnn等一些基本原理已经有所了解,这篇笔记主要记录怎么用tensorflow 实现对mnist手写数据集的分类,只涉及代码的讲解,方便以后的扩展编程。

mnist手写数据集

在这里插入图片描述

  • 标签(0-9共10类,标签即为图片中的数字。采用onehot编码)
  • 单个输入图像样本 28X28x1(灰度图像,通道数为1)

CNN构造

在进行代码编写前,我们需要先想好整个网络层的结构,比如,按照网上很多人(我也是这样)构造的结构如下:(这里进行两次conv和pooling)

  • 输入层(28 * 28 * 1)
  • 通过卷积层1(28 * 28 * 32)(32 filters)
  • 通过pooling层1(14 * 14 * 32)
  • 通过卷积层2(14 * 14 * 64)(2 filters)
  • 通过pooling层2(7 * 7 * 64)
  • 通过全连接层(1 * 1024)
  • 通过softmax层(10)

tensorflow函数参数说明

下面,我们用tf代表tensorflow,进行函数的解释

- tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, 
data_format=None, name=None)
      - input =[batch, in_height, in_width, in_channels]
      - filter = [filter_height, filter_width, in_channels, out_channels]
      - strides=[1, stride, stride, 1]
      - padding:填充规则
- tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)
	- value: same as input in tf.nn.conv2d
	- ksize:[1,window_height,window_width,1]
	- strides:same as strides in tf.nn.conv2d
	 - padding:填充规则
- tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 
	 - x 通过神经网络计算层的中间输出
	 - keep_prob 需要保留的百分比

函数构造及全部代码

# -*- coding: utf-8 -*-
"""
Created on Wed May  8 05:38:41 2019
@author: Like [email protected]
"""

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time


def weight_variable(shape):
    '''卷积核矩阵的初始化和/全连接神经网络权重的初始化模板,初始化为一个接近0的很小的正数'''
    initial = tf.truncated_normal(shape, stddev = 0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    '''reLu偏执项的初始化/全连接神经网络的偏执项初始化,初始化为0.1'''
    initial = tf.constant(0.1, shape = shape)
    return tf.Variable(initial)

def conv2d(x, W):
    '''卷积层的定义 使用卷积步长为1(stride size),0边距(padding size)'''
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding = 'SAME')
    # tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
    # x(input)  : [batch, in_height, in_width, in_channels]
    # W(filter) : [filter_height, filter_width, in_channels, out_channels]
    # strides   : The stride of the sliding window for each dimension of input.
    #             For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1]

def max_pool_2x2(x):
    '''max_pooling with 2*2 window'''
    return tf.nn.max_pool(x, ksize = [1, 2, 2, 1],
                          strides = [1, 2, 2, 1], padding = 'SAME')
    # tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)
    # x(value)              : [batch, height, width, channels]
    # ksize(pool大小)        : A list of ints that has length >= 4. The size of the window for each dimension of the input tensor.
    # strides(pool滑动大小)   : A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor.




if __name__ == "__main__":
    start = time.clock() #计算开始时间
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    """
    第一层 卷积层
    x_image(batch, 28, 28, 1) -> h_pool1(batch, 14, 14, 32)
    """
    x = tf.placeholder(tf.float32,[None, 784])
    x_image = tf.reshape(x, [-1, 28, 28, 1]) #最后一维代表通道数目,如果是rgb则为3 
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    # x_image -> [batch, in_height, in_width, in_channels]
    #            [batch, 28, 28, 1]
    # W_conv1 -> [filter_height, filter_width, in_channels, out_channels]
    #            [5, 5, 1, 32]
    # output  -> [batch, out_height, out_width, out_channels]
    #            [batch, 28, 28, 32]
    h_pool1 = max_pool_2x2(h_conv1)
    # h_conv1 -> [batch, in_height, in_weight, in_channels]
    #            [batch, 28, 28, 32]
    # output  -> [batch, out_height, out_weight, out_channels]
    #            [batch, 14, 14, 32]
    
    """
    第二层 卷积层
    
    h_pool1(batch, 14, 14, 32) -> h_pool2(batch, 7, 7, 64)
    """
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    # h_pool1 -> [batch, 14, 14, 32]
    # W_conv2 -> [5, 5, 32, 64]
    # output  -> [batch, 14, 14, 64]
    h_pool2 = max_pool_2x2(h_conv2)
    # h_conv2 -> [batch, 14, 14, 64]
    # output  -> [batch, 7, 7, 64]
    
    """
    第三层 全连接层
    
    h_pool2(batch, 7, 7, 64) -> h_fc1(1, 1024)
    """
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    """
    Dropout
    
    h_fc1 -> h_fc1_drop, 训练中启用,测试中关闭
    """
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    """
    第四层 Softmax输出层
    """
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    """
    训练和评估模型
    
    ADAM优化器来做梯度最速下降,feed_dict中加入参数keep_prob控制dropout比例
    """
    y_ = tf.placeholder("float", [None, 10])
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #计算交叉熵
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #使用adam优化器来以0.0001的学习率来进行微调
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) #判断预测标签和实际标签是否匹配
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    
    sess = tf.Session() #启动创建的模型
    sess.run(tf.initialize_all_variables()) #旧版本
    #sess.run(tf.global_variables_initializer()) #初始化变量
    
    for i in range(5000): #开始训练模型,循环训练5000次
        batch = mnist.train.next_batch(50) #batch大小设置为50
        if i % 100 == 0:
            train_accuracy = accuracy.eval(session = sess,
                                           feed_dict = {x:batch[0], y_:batch[1], keep_prob:1.0})
            print("step %d, train_accuracy %g" %(i, train_accuracy))
        train_step.run(session = sess, feed_dict = {x:batch[0], y_:batch[1],
                       keep_prob:0.5}) #神经元输出保持不变的概率 keep_prob 为0.5
    
    print("test accuracy %g" %accuracy.eval(session = sess,
          feed_dict = {x:mnist.test.images, y_:mnist.test.labels,
                       keep_prob:1.0})) #神经元输出保持不变的概率 keep_prob 为 1,即不变,一直保持输出
    
    end = time.clock() #计算程序结束时间
    print("running time is %g s") % (end-start)
发布了80 篇原创文章 · 获赞 332 · 访问量 70万+

猜你喜欢

转载自blog.csdn.net/qq_40527086/article/details/89957101