其次线性方程组,行列式为0,一定有非0解.

UTF8gbsn

对于齐次线性方程组,行列式为0,则一定有非零解.

看看问题的来源

{ a 11 x 1 + a 12 x 2 + + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + + a 2 n x n = 0 a n 1 x 1 + a n 2 x 2 + + a n n x n = 0 \left\{ \begin{aligned} a_{11}x_{1}+a_{12}x_2+\cdots+a_{1n}x_{n}=0\\ a_{21}x_{1}+a_{22}x_2+\cdots+a_{2n}x_{n}=0\\ \vdots \\ a_{n1}x_{1}+a_{n2}x_2+\cdots+a_{nn}x_{n}=0 \end{aligned} \right.

我们改写这个方程为矩阵的形式为

( a 11 a 12 a 1 n a 21 a 22 a 2 n a n 1 a n 2 a n n ) ( x 1 x 2 x n ) = 0 \left( \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right)\left( \begin{array}{c} x_{1} \\ x_2 \\ \vdots \\ x_n \end{array} \right)=0

我们可以把矩阵改写称为列向量形式

( a 1 a 2 a n ) ( x 1 x 2 x n ) = 0 a 1 x 1 + a 2 x 2 + + a n x n = 0 \left( \begin{array}{cccc} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{array} \right)\left( \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right)=0 \Rightarrow \mathbf{a_1}x_1+\mathbf{a_2}x_2+\cdots+\mathbf{a_n}x_n=0

从线性代数的线性相关和非线性相关的知识里面,我们可以得到.
如果 ( a 1 a 2 a n ) \left( \begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array} \right) 非线性相关,那么 ( x 1 x 2 x n ) \left( \begin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array} \right) 只能都取0.只有当 ( a 1 a 2 a n ) \left( \begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array} \right) 线性相关的时候, ( x 1 x 2 x n ) \left( \begin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array} \right) 才可以有非零元素.

而如果 ( a 1 a 2 a n ) \left( \begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array} \right) 线性相关,那么下面的行列式就等于0

a 11 a 12 a 1 n a 21 a 22 a 2 n a n 1 a n 2 a n n = 0 \left| \begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right|=0

于是原命题得证.

发布了127 篇原创文章 · 获赞 11 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/luixiao1220/article/details/104423104