pytorch GAN伪造手写体mnist数据集

一,mnist数据集

形如上图的数字手写体就是mnist数据集。

二,GAN原理(生成对抗网络)

GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D)

一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的。D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值。因此G和D都在不停地更新权值。以下图为例:

在v1时的G只不过是 一堆噪声,见过数据集(real images)的D肯定能判断出G所生成的是假的。当然G也能知道D判断它是假的这个结果,因此G就会更新权值,到v2的时候,G就能生成更逼真的图片来让D判断,当然在v2时D也是会先看一次真图片,再去判断G所生成的图片。以此类推,不断循环就是GAN的思想。

三,训练代码

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)  # 确定图片输入的格式为(1,28,28),由于mnist数据集是灰度图所以通道为1
cuda = True if torch.cuda.is_available() else False


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)
        return validity


# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------
if __name__ == '__main__':
    for epoch in range(opt.n_epochs):
        for i, (imgs, _) in enumerate(dataloader):
            # print(imgs.shape)
            # Adversarial ground truths
            valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)  # 全1
            fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)  # 全0
            # Configure input
            real_imgs = Variable(imgs.type(Tensor))

            # -----------------
            #  Train Generator
            # -----------------

            optimizer_G.zero_grad()  # 清空G网络 上一个batch的梯度

            # Sample noise as generator input
            z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))  # 生成的噪音,均值为0方差为1维度为(64,100)的噪音
            # Generate a batch of images
            gen_imgs = generator(z)
            # Loss measures generator's ability to fool the discriminator
            g_loss = adversarial_loss(discriminator(gen_imgs), valid)

            g_loss.backward()  # g_loss用于更新G网络的权值,g_loss于D网络的判断结果 有关
            optimizer_G.step()

            # ---------------------
            #  Train Discriminator
            # ---------------------

            optimizer_D.zero_grad()  # 清空D网络 上一个batch的梯度
            # Measure discriminator's ability to classify real from generated samples
            real_loss = adversarial_loss(discriminator(real_imgs), valid)
            fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
            d_loss = (real_loss + fake_loss) / 2

            d_loss.backward()  # d_loss用于更新D网络的权值
            optimizer_D.step()

            print(
                "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
                % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
            )

            batches_done = epoch * len(dataloader) + i
            if batches_done % opt.sample_interval == 0:
                save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)  # 保存一个batchsize中的25张
            if (epoch+1) %2 ==0:
                print('save..')
                torch.save(generator,'g%d.pth' % epoch)
                torch.save(discriminator,'d%d.pth' % epoch)

运行结果:

一开始时,G生成的全是杂音:

然后逐渐呈现数字的雏形:

最后一次生成的结果:

四,测试代码:

导入最后保存生成器的模型:

from gan import Generator,Discriminator
import torch
import matplotlib.pyplot as plt
from torch.autograd import Variable
import numpy as np
from torchvision.utils import save_image

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Tensor = torch.cuda.FloatTensor
g = torch.load('g199.pth')  #导入生成器Generator模型
#d = torch.load('d.pth')
g = g.to(device)
#d = d.to(device)

z = Variable(Tensor(np.random.normal(0, 1, (64, 100))))  #输入的噪音
gen_imgs =g(z)  #生产图片
save_image(gen_imgs.data[:25], "images.png" , nrow=5, normalize=True)

生成结果:

发布了270 篇原创文章 · 获赞 408 · 访问量 76万+

猜你喜欢

转载自blog.csdn.net/u014453898/article/details/95044228
今日推荐