自动驾驶(二十七)---------传感器数据融合

       多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间或时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述,原理如下:

  1. N个不同类型的传感器(有源或无源的)收集观测目标的数据;
  2. 对传感器的输出数据(离散的或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi;
  3. 对特征矢量Yi进行模式识别处理(如,聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等)完成各传感器关于目标的说明;
  4. 将各传感器关于目标的说明数据按同一目标进行分组,即关联;
  5. 利用融合算法将每一目标各传感器数据进行合成,得到该目标的一致性解释与描述。

        多传感器融合在结构上按其在融合系统中信息处理的抽象程度,主要划分为三个层次:数据层融合、特征层融合和决策层融合。

  1. 数据层融合:也称像素级融合,首先将传感器的观测数据融合,然后从融合的数据中提取特征向量,并进行判断识别。数据层融合需要传感器是同质的(传感器观测的是同一物理现象),如果多个传感器是异质的(观测的不是同一个物理量),那么数据只能在特征层或决策层进行融合。数据层融合不存在数据丢失的问题,得到的结果也是最准确的,但计算量大,且对系统通信带宽的要求很高。
  2. 特征层融合:特征层融合属于中间层次,先从每种传感器提供的观测数据中提取的有代表性的特征,这些特征融合成单一的特征向量,然后运用模式识别的方法进行处理。这种方法的计算量及对通信带宽的要求相对降低,但由于部分数据的舍弃使其准确性有所下降。
  3. 决策层融合:决策层融合属于高层次的融合,由于对传感器的数据进行了浓缩,这种方法产生的结果相对而言最不准确,但它的计算量及对通信带宽的要求最低。

       多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、Dempster-Shafer(D-S)证据推理、产生式规则等;而人工智能类有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。

1. 加权平均法

       信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。

2. 卡尔曼滤波法

      卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计。卡尔曼滤波的递推特性使系统处理不需要大量的数据存储和计算。但是,采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在很多严重的问题,例如:(1)在组合信息大量冗余的情况下,计算量将以滤波器维数的三次方剧增,实时性不能满足;(2)传感器子系统的增加使故障随之增加,在某一系统出现故障而没有来得及被检测出时,故障会污染整个系统,使可靠性降低。

3. 多贝叶斯估计法

       贝叶斯估计为数据融合提供了一种手段,是融合静环境中多传感器高层信息的常用方法。它使传感器信息依据概率原则进行组合,测量不确定性以条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数情况下,传感器测量数据要以间接方式采用贝叶斯估计进行数据融合。

       多贝叶斯估计将每一个传感器作为一个贝叶斯估计,将各个单独物体的关联概率分布合成一个联合的后验的概率分布函数,通过使用联合分布函数的似然函数为最小,提供多传感器信息的最终融合值,融合信息与环境的一个先验模型提供整个环境的一个特征描述。

4. D-S证据推理方法

       D-S证据推理是贝叶斯推理的扩充,其3个基本要点是:基本概率赋值函数、信任函数和似然函数。D-S方法的推理结构是自上而下的,分三级。第1级为目标合成,其作用是把来自独立传感器的观测结果合成为一个总的输出结果(ID);第2级为推断,其作用是获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告。这种推理的基础是:一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告;第3级为更新,各种传感器一般都存在随机误差,所以,在时间上充分独立地来自同一传感器的一组连续报告比任何单一报告可靠。因此,在推理和多传感器合成之前,要先组合(更新)传感器的观测数据。

5. 产生式规则

      产生式规则采用符号表示目标特征和相应传感器信息之间的联系,与每一个规则相联系的置信因子表示它的不确定性程度。当在同一个逻辑推理过程中,2个或多个规则形成一个联合规则时,可以产生融合。应用产生式规则进行融合的主要问题是每个规则的置信因子的定义与系统中其他规则的置信因子相关,如果系统中引入新的传感器,需要加入相应的附加规则。

人工智能类方法:

1. 模糊逻辑推理

       模糊逻辑是多值逻辑,通过指定一个0到1之间的实数表示真实度,相当于隐含算子的前提,允许将多个传感器信息融合过程中的不确定性直接表示在推理过程中。如果采用某种系统化的方法对融合过程中的不确定性进行推理建模,则可以产生一致性模糊推理。与概率统计方法相比,逻辑推理存在许多优点,它在一定程度上克服了概率论所面临的问题,它对信息的表示和处理更加接近人类的思维方式,它一般比较适合于在高层次上的应用(如决策),但是,逻辑推理本身还不够成熟和系统化。此外,由于逻辑推理对信息的描述存在很大的主观因素,所以,信息的表示和处理缺乏客观性。

      模糊集合理论对于数据融合的实际价值在于它外延到模糊逻辑,模糊逻辑是一种多值逻辑,隶属度可视为一个数据真值的不精确表示。在MSF过程中,存在的不确定性可以直接用模糊逻辑表示,然后,使用多值逻辑推理,根据模糊集合理论的各种演算对各种命题进行合并,进而实现数据融合。

2. 人工神经网络法

       神经网络具有很强的容错性以及自学习、自组织及自适应能力,能够模拟复杂的非线性映射。神经网络的这些特性和强大的非线性处理能力,恰好满足了多传感器数据融合技术处理的要求。在多传感器系统中,各信息源所提供的环境信息都具有一定程度的不确定性,对这些不确定信息的融合过程实际上是一个不确定性推理过程。神经网络根据当前系统所接受的样本相似性确定分类标准,这种确定方法主要表现在网络的权值分布上,同时,可以采用经*定的学习算法来获取知识,得到不确定性推理机制。利用神经网络的信号处理能力和自动推理功能,即实现了多传感器数据融合。

发布了66 篇原创文章 · 获赞 115 · 访问量 82万+

猜你喜欢

转载自blog.csdn.net/zhouyy858/article/details/100345692
今日推荐