1.2 System of Linear Equations

这一节与1.1 Fields一起,是一个基础知识介绍,主要概念包括field和subfield,system of m linear equations in n unknowns,以及什么是solution,什么是homogeneous system。
field需要满足9个条件,subfield则重点介绍的是复数域C上自成一域的集合。域的特征值是挺有意思的一个新概念,一般能遇到的field都是characteristic zero的。
在介绍方程组系统时,很快就引入了linear combination的概念,如果用线性空间的思维来看,equations in n unknowns with coefficients in F可以看作一个线性空间V,如果说一个方程是某个系统中方程的linear combination,那么这一方程处于这个系统在V中span的subfield,如果两个系统等价,按照文中定义,就是他们span成相同的subfield,因此解相同,这也是Theorem 1 的内容。并且,V中的任何一个subfield都对应着 F n F^n 里的一个subfield(即解空间solution space),当然按照1.2的内容还没法证明 V V F n F^n 是不是同构(isomorphism)的。

Exercises

1.Verify that the set of complex numbers described in Example 4 is a subfield of C C .

Solution:Let F = { x + y 2 : x , y Q } F=\{x+y\sqrt{2}:x,y∈Q\} , then 0 = 0 + 0 2 , 1 = 1 + 0 2 0=0+0\sqrt{2},1=1+0\sqrt{2} , thus 0 , 1 F 0,1∈F , let x , y F x,y∈F , then x = a + b 2 , y = c + d 2 , a , b , c , d Q x=a+b\sqrt{2},y=c+d\sqrt{2},a,b,c,d∈Q , so we have
x + y = a + c + ( b + d ) 2 F x = a b 2 F x y = a c + 2 b d + ( a d + b c ) 2 F x 1 = 1 a + b 2 = a b 2 a 2 2 b 2 F x+y=a+c+(b+d)\sqrt{2}\in F\\-x=-a-b\sqrt{2}\in F \\ xy=ac+2bd+(ad+bc)\sqrt{2}\in F\\x^{-1}=\frac{1}{a+b\sqrt{2}}=\frac{a-b\sqrt{2}}{a^2-2b^2 }\in F

2.Let F F be the field of complex numbers. Are the following two systems of linear equations equivalent? If so, express each equation in each system as a linear combination of the equations in the other system.

x 1 x 2 = 0 3 x 1 + x 2 = 0 2 x 1 + x 2 = 0 x 1 + x 2 = 0 \begin{aligned}x_1-x_2&=0\quad\quad 3x_1+x_2&=0\\2x_1+x_2&=0\quad\quad x_1+x_2&=0\end{aligned}
Solution:They are equivalent, since
3 x 1 + x 2 = 1 / 3 ( x 1 x 2 ) + 4 / 3 ( 2 x 1 + x 2 ) x 1 + x 2 = 1 / 3 ( x 1 x 2 ) + 2 / 3 ( 2 x 1 + x 2 ) 3x_1+x_2=1/3 (x_1-x_2 )+4/3 (2x_1+x_2 )\\x_1+x_2=-1/3 (x_1-x_2 )+2/3 (2x_1+x_2 )
and
x 1 x 2 = ( 3 x 1 + x 2 ) 2 ( x 1 + x 2 ) 2 x 1 + x 2 = 1 / 2 ( 3 x 1 + x 2 ) + 1 / 2 ( x 1 + x 2 ) x_1-x_2=(3x_1+x_2 )-2(x_1+x_2)\\2x_1+x_2=1/2 (3x_1+x_2 )+1/2 (x_1+x_2 )

3.Test the following systems of equations as in Exercise 2.

x 1 + x 2 + 4 x 3 = 0 x 1 x 3 = 0 x 1 + 3 x 2 + 8 x 3 = 0 x 2 + 3 x 3 = 0 1 2 x 1 + x 2 + 5 2 x 3 = 0 \begin{aligned}-x_1+x_2+4x_3&=0\quad\quad x_1-&&x_3&=0\\x_1+3x_2+8x_3&=0\quad\quad &x_2+3&x_3&=0\\ \frac{1}{2}x_1+x_2+\frac{5}{2}x_3&=0\end{aligned}
Solution: They are equivalent, since
x 1 + x 2 + 4 x 3 = ( x 1 x 3 ) + ( x 2 + 3 x 3 ) x 1 + 3 x 2 + 8 x 3 = ( x 1 x 3 ) + 3 ( x 2 + 3 x 3 ) 1 / 2 x 1 + x 2 + 5 / 2 x 3 = 1 / 2 ( x 1 x 3 ) + ( x 2 + 3 x 3 ) -x_1+x_2+4x_3=-(x_1-x_3 )+(x_2+3x_3)\\ x_1+3x_2+8x_3=(x_1-x_3 )+3(x_2+3x_3)\\ 1/2 x_1+x_2+5/2 x_3=1/2 (x_1-x_3 )+(x_2+3x_3)
and
x 1 x 3 = 2 / 3 ( x 1 + x 2 + 4 x 3 ) + 2 / 3 ( 1 / 2 x 1 + x 2 + 5 / 2 x 3 ) x 2 + 3 x 3 = 1 / 4 ( x 1 + x 2 + 4 x 3 ) + 1 / 4 ( x 1 + 3 x 2 + 8 x 3 ) x_1-x_3=-2/3 (-x_1+x_2+4x_3 )+2/3 (1/2 x_1+x_2+5/2 x_3 )\\ x_2+3x_3=1/4 (-x_1+x_2+4x_3 )+1/4(x_1+3x_2+8x_3)

4.Test the following systems of equations as in Exercise 2.

2 x 1 + ( 1 + i ) x 2 + x 4 = 0 ( 1 + i 2 ) x 1 + 8 x 2 i x 3 x 4 = 0 3 x 2 2 i x 3 + 5 x 4 = 0 2 3 x 1 1 2 x 2 + x 3 + 7 x 4 = 0 \begin{aligned}2x_1+(-1+i)&x_2+&x_4&=0\quad\quad &\left(1+\frac{i}{2}\right)x_1+8x_2-ix_3-x_4&=0\\&3x_2-2ix_3+&5x_4&=0\quad\quad &\frac{2}{3}x_1-\frac{1}{2}x_2+x_3+7x_4&=0\end{aligned}
Solution: They are not equivalent, suppose
a ( 2 x 1 + ( 1 + i ) x 2 + x 4 ) + b ( 3 x 2 2 i x 3 + 5 x 4 ) = ( 1 + i / 2 ) x 1 + 8 x 2 i x 3 x 4 a(2x_1+(-1+i) x_2+x_4 )+b(3x_2-2ix_3+5x_4 )\\=(1+i/2) x_1+8x_2-ix_3-x_4
then compare x 1 x_1 we have a = 1 / 2 + i / 4 a=1/2+i/4 , compare x 3 x_3 we have b = 1 / 2 b=1/2 , but then a + 5 b = 3 + i / 4 1 a+5b=3+i/4\neq -1

5. Let F be a set which contains exactly two elements, 0 and 1. Define an addition and multiplication by the tables:

+ 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 \begin{array}{lr} \begin{array}{c|lr} {+} & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} &\quad \begin{array}{c|lr} {\cdot} & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array} \end{array}

Verify that the set F F , together with these two operations, is a field.

Solution:The verification is as follows:

  1. Addition is commutative
    0 + 0 = 0 + 0 , 0 + 1 = 1 = 1 + 0 , 1 + 1 = 0 = 1 + 1 0+0=0+0,0+1=1=1+0,1+1=0=1+1
  2. Addition is associative
    0 + ( 0 + 0 ) = 0 = ( 0 + 0 ) + 0 0 + ( 1 + 0 ) = 1 = ( 0 + 1 ) + 0 0 + ( 0 + 1 ) = 1 = ( 0 + 0 ) + 1 0 + ( 1 + 1 ) = 0 + 0 = 0 = ( 0 + 1 ) + 1 1 + ( 0 + 0 ) = 1 = 1 + 0 = ( 1 + 0 ) + 0 1 + ( 1 + 0 ) = 1 + 1 = 0 = ( 1 + 1 ) + 0 1 + ( 0 + 1 ) = 0 = ( 1 + 0 ) + 1 1 + ( 1 + 1 ) = 1 = 0 + 1 = ( 1 + 1 ) + 1 0+(0+0)=0=(0+0)+0 \\ 0+(1+0)=1=(0+1)+0 \\ 0+(0+1)=1=(0+0)+1 \\ 0+(1+1)=0+0=0=(0+1)+1 \\ 1+(0+0)=1=1+0=(1+0)+0 \\ 1+(1+0)=1+1=0=(1+1)+0 \\ 1+(0+1)=0=(1+0)+1 \\ 1+(1+1)=1=0+1=(1+1)+1
  3. The 0 0 is the element 0 0 in F F , since 0 + 0 = 0 , 1 + 0 = 1 0+0=0,1+0=1
  4. To 0 0 , we have 0 = 0 -0=0 , to 1 1 , we have 1 = 1 -1=1 since 1 + 1 = 0 1+1=0
  5. Multiplication is commutative
    0 0 = 0 0 = 0 , 0 1 = 1 0 = 0 , 1 1 = 1 1 = 1 0⋅0=0⋅0=0,0⋅1=1⋅0=0,1⋅1=1⋅1=1
  6. Multiplication is associative
    0 ( 0 0 ) = 0 0 = 0 = 0 0 = ( 0 0 ) 0 0 ( 1 0 ) = 0 0 = 0 = 0 0 = ( 0 1 ) 0 0 ( 0 1 ) = 0 0 = 0 = 0 0 = ( 0 0 ) 1 0 ( 1 1 ) = 0 1 = 0 = 0 1 = ( 0 1 ) 1 1 ( 0 0 ) = 1 0 = 0 = 0 0 = ( 1 0 ) 0 1 ( 1 0 ) = 1 0 = 0 = 1 0 = ( 1 1 ) 0 1 ( 0 1 ) = 1 0 = 0 = 0 1 = ( 1 0 ) 1 1 ( 1 1 ) = 1 1 = 1 = 1 1 = ( 1 1 ) 1 0⋅(0⋅0)=0⋅0=0=0⋅0=(0⋅0)⋅0 \\ 0⋅(1⋅0)=0⋅0=0=0⋅0=(0⋅1)⋅0 \\ 0⋅(0⋅1)=0⋅0=0=0⋅0=(0⋅0)⋅1 \\ 0⋅(1⋅1)=0⋅1=0=0⋅1=(0⋅1)⋅1 \\ 1⋅(0⋅0)=1⋅0=0=0⋅0=(1⋅0)⋅0 \\ 1⋅(1⋅0)=1⋅0=0=1⋅0=(1⋅1)⋅0 \\ 1⋅(0⋅1)=1⋅0=0=0⋅1=(1⋅0)⋅1 \\ 1⋅(1⋅1)=1⋅1=1=1⋅1=(1⋅1)⋅1
  7. The 1 1 is the element 1 1 in F F since 0 1 = 0 0⋅1=0 and 1 1 = 1 1⋅1=1
  8. To 1 1 there’s 1 1 = 1 1^{-1}=1 , since 1 1 = 1 1⋅1=1
  9. Multiplication distributes over addition
    0 ( 0 + 0 ) = 0 0 = 0 = 0 + 0 = 0 0 + 0 0 0 ( 1 + 0 ) = 0 1 = 0 = 0 + 0 = 0 1 + 0 0 0 ( 0 + 1 ) = 0 0 = 0 = 0 + 0 = 0 0 + 0 1 0 ( 1 + 1 ) = 0 0 = 0 = 0 + 0 = 0 1 + 0 1 1 ( 0 + 0 ) = 1 0 = 0 = 0 + 0 = 1 0 + 1 0 1 ( 1 + 0 ) = 1 1 = 1 = 1 + 0 = 1 1 + 1 0 1 ( 0 + 1 ) = 1 1 = 1 = 0 + 1 = 1 0 + 1 1 1 ( 1 + 1 ) = 1 0 = 0 = 1 + 1 = 1 1 + 1 1 0⋅(0+0)=0⋅0=0=0+0=0⋅0+0⋅0 \\ 0⋅(1+0)=0⋅1=0=0+0=0⋅1+0⋅0 \\ 0⋅(0+1)=0⋅0=0=0+0= 0⋅0+0⋅1 \\ 0⋅(1+1)=0⋅0=0=0+0=0⋅1+0⋅1 \\ 1⋅(0+0)=1⋅0=0=0+0=1⋅0+1⋅0 \\ 1⋅(1+0)=1⋅1=1=1+0=1⋅1+1⋅0 \\ 1⋅(0+1)=1⋅1=1=0+1=1⋅0+1⋅1 \\ 1⋅(1+1)=1⋅0=0=1+1=1⋅1+1⋅1
6. Prove that if two homogeneous systems of linear equations in two unknowns have the same solutions, then they are equivalent.

Solution:Let
{ a 1 x 1 + a 2 x 2 = 0 b 1 x 1 + b 2 x 2 = 0 , { c 1 x 1 + c 2 x 2 = 0 d 1 x 1 + d 2 x 2 = 0 \begin{cases}a_1 x_1+a_2 x_2=0\\ b_1 x_1+b_2 x_2=0\end{cases},\quad \begin{cases}c_1 x_1+c_2 x_2=0\\d_1 x_1+d_2 x_2=0 \end{cases}
be two homogeneous system of linear equations, if they have only zero solutions, then ( a 1 , a 2 ) (a_1,a_2 ) and ( b 1 , b 2 ) (b_1,b_2 ) are linearly independent, thus a basis of R 2 R^2 , thus they can represent ( c 1 , c 2 ) (c_1,c_2 ) and ( d 1 , d 2 ) (d_1,d_2 ) , vice versa.
If they have non-zero solutions, then either all a i , b i , c i , d i a_i,b_i,c_i,d_i are 0 0 , or in each of the set ( a 1 , a 2 , b 1 , b 2 ) (a_1,a_2,b_1,b_2 ) and ( c 1 , c 2 , d 1 , d 2 ) (c_1,c_2,d_1,d_2 ) we have at least one nonzero element. Without loss of generality we suppose ( a 1 , a 2 ) = k ( b 1 , b 2 ) , ( c 1 , c 2 ) = l ( d 1 , d 2 ) (a_1,a_2 )=k(b_1,b_2 ),(c_1,c_2 )=l(d_1,d_2 ) for some k , l R k,l∈R , in which one of b 1 , b 2 b_1,b_2 and one of d 1 , d 2 d_1,d_2 is nonzero, we further suppose b 1 0 , d 1 0 b_1\neq 0,d_1\neq 0 , then let x 1 , x 2 x_1,x_2 be a common solution, we have
b 2 / b 1 = x 2 / x 1 = d 2 / d 1 m b_2/b_1 =-x_2/x_1 =d_2/d_1 \coloneqq m
then b 2 = b 1 m , d 2 = d 1 m b_2=b_1 m,d_2=d_1 m , thus
b 1 x 1 + b 2 x 2 = b 1 x 1 + b 1 m x 2 = b 1 d 1 d 1 ( x 1 + m x 2 ) = b 1 d 1 ( d 1 x 1 + d 2 x 2 ) b_1 x_1+b_2 x_2=b_1 x_1+b_1 mx_2=\frac{b_1}{d_1} d_1 (x_1+mx_2 )=\frac{b_1}{d_1} (d_1 x_1+d_2 x_2 )
and also we have
d 1 x 1 + d 2 x 2 = d 1 b 1 ( b 1 x 1 + b 2 x 2 ) d_1 x_1+d_2 x_2=\frac{d_1}{b_1} (b_1 x_1+b_2 x_2 )
thus the equivalence is proved.

7. Prove that each subfield of the field of complex numbers contains every rational number.

Solution:Let F F be a subfield of C C , then 1 F 1\in F , thus N + F N^+\subset F from the fact that x + y F x+y\in F , and Z F Z\subset F since x F -x∈F and 0 F 0∈F , also from x 1 F x^{-1}\in F we have
A { 1 n : n Z \ { 0 } } F A≔\left\{\frac{1}{n}:n\in Z\backslash \{0\}\right\}⊂F
finally from x y F xy∈F we see Q = Z × A F Q=Z×A⊂F since Q = { x y : x Z , y A } Q=\{xy:x∈Z,y∈A\} .

8. Prove that each field of characteristic zero contains a copy of the rational number field.

Solution:In a field of characteristic zero, we can successfully define
2 1 + 1 3 1 + 1 + 1 n 1 + 1 + + 1 n 2≔1+1 \\ 3≔1+1+1 \\ \cdots \\ n\coloneqq \underbrace{1+1+⋯+1}_n
and form a copy of N + N^+ .
Use the property ( x F ) ( x F ) (x∈F)⇒(-x∈F) we can get a copy of Z Z .
Use the property ( x F , x 0 ) ( x 1 F ) (x∈F,x≠0)⇒(x^{-1}∈F) and ( x F , y F ) ( x y F ) (x∈F,y∈F)⇒(xy∈F) we can finally get a copy of Q Q .

发布了77 篇原创文章 · 获赞 14 · 访问量 2807

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103211084
1.2