线性回归(Pytorch版)

# # 线性回归的从零开始实现

# In[6]:


get_ipython().run_line_magic('matplotlib', 'inline')
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random


# ## 生成数据集

# In[7]:


num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.randn(num_examples, num_inputs,
                       dtype=torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
                       dtype=torch.float32)


# In[8]:


print(features[0], labels[0])


# In[9]:


def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')

def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize

# # 在../d2lzh_pytorch里面添加上面两个函数后就可以这样导入
# import sys
# sys.path.append("..")
# from d2lzh_pytorch import * 

set_figsize()
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);


# ## 读取数据

# In[10]:


# 本函数已保存在d2lzh包中方便以后使用
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # 最后一次可能不足一个batch
        yield  features.index_select(0, j), labels.index_select(0, j)


# In[11]:


batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break


# ## 初始化模型参数

# In[12]:


w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)


# In[13]:


w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True) 


# ## 定义模型

# In[14]:


def linreg(X, w, b):  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    return torch.mm(X, w) + b


# ## 定义损失函数

# In[15]:


def squared_loss(y_hat, y):  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    # 注意这里返回的是向量, 另外, pytorch里的MSELoss并没有除以 2
    return (y_hat - y.view(y_hat.size())) ** 2 / 2


# ## 定义优化算法

# In[16]:


def sgd(params, lr, batch_size):  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    for param in params:
        param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data


# ## 训练模型

# In[17]:


lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y).sum()  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数

        # 不要忘了梯度清零
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))


# In[18]:


print(true_w, '\n', w)
print(true_b, '\n', b)


# # 线性回归的简洁实现

# ## 生成数据集

# In[19]:


num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)


# ## 读取数据

# In[20]:


import torch.utils.data as Data

batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 随机读取小批量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)


# In[21]:


for X, y in data_iter:
    print(X, y)
    break


# ## 定义模型

# In[24]:


from torch import nn


# In[25]:


class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()
        self.linear = nn.Linear(n_feature, 1)
    # forward 定义前向传播
    def forward(self, x):
        y = self.linear(x)
        return y

net = LinearNet(num_inputs)
print(net) # 使用print可以打印出网络的结构


# In[26]:


# 写法一
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # 此处还可以传入其他层
    )

# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......

# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
          ('linear', nn.Linear(num_inputs, 1))
          # ......
        ]))

print(net)
print(net[0])


# In[27]:


for param in net.parameters():
    print(param)


# ## 初始化模型参数

# In[28]:


from torch.nn import init

init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)  # 也可以直接修改bias的data: net[0].bias.data.fill_(0)


# ## 定义损失函数

# In[29]:


loss = nn.MSELoss()


# ## 定义优化算法

# In[30]:


import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03)
print(optimizer)


# ## 训练模型

# In[31]:


num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))


# In[32]:


dense = net[0]
print(true_w, dense.weight)
print(true_b, dense.bias)

猜你喜欢

转载自www.cnblogs.com/deeplearning-man/p/12309439.html