typedef struct与struct

1. 基本解释

typedef为C语言的关键字,作用是为一种数据类型定义一个新名字。这里的数据类型包括内部数据类型(int,char等)和自定义的数据类型(struct等)。

在编程中使用typedef目的一般有两个,一个是给变量一个易记且意义明确的新名字,另一个是简化一些比较复杂的类型声明。

至于typedef有什么微妙之处,请你接着看下面对几个问题的具体阐述。

2. typedef & 结构的问题

当用下面的代码定义一个结构时,编译器报了一个错误,为什么呢?莫非C语言不允许在结构中包含指向它自己的指针吗?请你先猜想一下,然后看下文说明:

typedef struct tagNode
{
 char *pItem;
 pNode pNext;
} *pNode;

答案与分析:

1、typedef的最简单使用

typedef long byte_4;

给已知数据类型long起个新名字,叫byte_4。

2、 typedef与结构结合使用

typedef struct tagMyStruct
{ 
 int iNum;
 long lLength;
} MyStruct;

这语句实际上完成两个操作:

1) 定义一个新的结构类型

struct tagMyStruct
{ 
 int iNum; 
 long lLength; 
};

分析:tagMyStruct称为“tag”,即“标签”,实际上是一个临时名字,struct 关键字和tagMyStruct一起,构成了这个结构类型,不论是否有typedef,这个结构都存在。

我们可以用struct tagMyStruct varName来定义变量,但要注意,使用tagMyStruct varName来定义变量是不对的,因为struct 和tagMyStruct合在一起才能表示一个结构类型。

2) typedef为这个新的结构起了一个名字,叫MyStruct。

typedef struct tagMyStruct MyStruct;

因此,MyStruct实际上相当于struct tagMyStruct,我们可以使用MyStruct varName来定义变量。

答案与分析

C语言当然允许在结构中包含指向它自己的指针,我们可以在建立链表等数据结构的实现上看到无数这样的例子,上述代码的根本问题在于typedef的应用。

根据我们上面的阐述可以知道:新结构建立的过程中遇到了pNext域的声明,类型是pNode,要知道pNode表示的是类型的新名字,那么在类型本身还没有建立完成的时候,这个类型的新名字也还不存在,也就是说这个时候编译器根本不认识pNode。

解决这个问题的方法有多种:

1)、

typedef struct tagNode 
{
 char *pItem;
 struct tagNode *pNext;
} *pNode;

2)、

typedef struct tagNode *pNode;
struct tagNode 
{
 char *pItem;
 pNode pNext;
};

注意:在这个例子中,你用typedef给一个还未完全声明的类型起新名字。C语言编译器支持这种做法。

3)、规范做法:

typedef uint32 (* ADM_READDATA_PFUNC)( uint16*, uint32 );

这个以前没有看到过,个人认为是宇定义一个uint32的指针函数,uint16*, uint32 为函数里的两个参数; 应该相当于#define uint32 (* ADM_READDATA_PFUNC)( uint16*, uint32 );

struct在代码中常见两种形式: 
struct A 
{ 
//... 
};

struct 
{ 
//... 
} A; 
这其实是两个完全不同的用法: 
前者叫做“结构体类型定义”,意思是:定义{}中的结构为一个名称是“A”的结构体。 
这种用法在typedef中一般是: 
typedef struct tagA //故意给一个不同的名字,作为结构体的实名 
{ 
//... 
} A; //结构体的别名。

后者是结构体变量定义,意思是:以{}中的结构,定义一个名称为"A"的变量。这里的结构体称为匿名结构体,是无法被直接引用的。 
也可以通过typedef为匿名结构体创建一个别名,从而使得它可以被引用: 
typedef struct 
{ 
//... 
} A; //定义匿名结构体的别名为A

第二篇:在C和C++中struct和typedef struct的区别

在C和C++有三种定义结构的方法。

typedef struct {

int data;

int text;

} S1;

//这种方法可以在c或者c++中定义一个S1结构

struct S2 {

int data;

int text;

};

// 这种定义方式只能在C++中使用,而如果用在C中,那么编译器会报错

struct {

int data;

int text;

} S3;

这种方法并没有定义一个结构,而是定义了一个s3的结构变量,编译器会为s3内存。

void main()

{

S1 mine1;// OK ,S1 是一个类型

S2 mine2;// OK,S2 是一个类型

S3 mine3;// OK,S3 不是一个类型

S1.data = 5;// ERRORS1 是一个类型

S2.data = 5;// ERRORS2 是一个类型

S3.data = 5;// OKS3是一个变量

}

另外,对与在结构中定义结构本身的变量也有几种写法

struct S6 {

S6* ptr;

};

// 这种写法只能在C++中使用

typedef struct {

S7* ptr;

} S7;

// 这是一种在C和C++中都是错误的定义

如果在C中,我们可以使用这样一个“曲线救国的方法“

typedef struct tagS8{

tagS8 * ptr;

} S8;

第三篇:struct和typedef struct

分三块来讲述:
1 首先: 
在C中定义一个结构体类型要用typedef:
typedef struct Student
{
int a;
}Stu;
于是在声明变量的时候就可:Stu stu1;
如果没有typedef就必须用struct Student stu1;来声明
这里的Stu实际上就是struct Student的别名。
另外这里也可以不写Student(于是也不能struct Student stu1;了)
typedef struct
{
int a;
}Stu;
但在c++里很简单,直接
struct Student
{
int a;
};
于是就定义了结构体类型Student,声明变量时直接Student stu2;
===========================================
2其次: 
在c++中如果用typedef的话,又会造成区别:
struct Student 
{ 
int a; 
}stu1;//stu1是一个变量 
typedef struct Student2 
{ 
int a; 
}stu2;//stu2是一个结构体类型 
使用时可以直接访问stu1.a
但是stu2则必须先 stu2 s2;
然后 s2.a=10;
===========================================
3 掌握上面两条就可以了,不过最后我们探讨个没多大关系的问题
如果在c程序中我们写:
typedef struct
{
int num;
int age;
}aaa,bbb,ccc;
这算什么呢?
我个人观察编译器(VC6)的理解,这相当于
typedef struct
{
int num;
int age;
}aaa;
typedef aaa bbb;
typedef aaa ccc;
也就是说aaa,bbb,ccc三者都是结构体类型。声明变量时用任何一个都可以,在c++中也是如此。但是你要注意的是这个在c++中如果写掉了typedef关键字,那么aaa,bbb,ccc将是截然不同的三个对象。

第四篇:C/C++中typedef struct和struct的用法

struct _x1 { ...}x1; 和 typedef struct _x2{ ...} x2; 有什么不同? 

其实, 前者是定义了类_x1和_x1的对象实例x1, 后者是定义了类_x2和_x2的类别名x2 , 

所以它们在使用过程中是有取别的.请看实例1. 

[知识点] 

结构也是一种数据类型, 可以使用结构变量, 因此, 象其它 类型的变量一样, 在使用结构变量时要先对其定义。 

定义结构变量的一般格式为: 

struct 结构名 

{ 

类型 变量名; 

类型 变量名; 

... 

} 结构变量; 

结构名是结构的标识符不是变量名。 

另一种常用格式为: 

typedef struct 结构名 

{ 

类型 变量名; 

类型 变量名; 

... 

} 结构别名; 

另外注意: 在C中,struct不能包含函数。在C++中,对struct进行了扩展,可以包含函数。 

====================================================================== 

实例1: struct.cpp 

#include <iostream> 

using namespace std; 

typedef struct _point{ 

int x; 

int y; 

}point; //定义类,给类一个别名 

struct _hello{ 

int x,y; 

} hello; //同时定义类和对象 

int main() 

{ 

point pt1; 

pt1.x = 2; 

pt1.y = 5; 

cout<< "ptpt1.x=" << pt1.x << "pt.y=" <<pt1.y <<endl; 

//hello pt2; 

//pt2.x = 8; 

//pt2.y =10; 

//cout<<"pt2pt2.x="<< pt2.x <<"pt2.y="<<pt2.y <<endl; 

//上面的hello pt2;这一行编译将不能通过. 为什么? 

//因为hello是被定义了的对象实例了. 

//正确做法如下: 用hello.x和hello.y 

hello.x = 8; 

hello.y = 10; 

cout<< "hellohello.x=" << hello.x << "hello.y=" <<hello.y <<endl; 

return 0; 

}

第五篇:问答

Q: 用struct和typedef struct 定义一个结构体有什么区别?为什么会有两种方式呢?

struct Student 
{ 
int a; 
} stu; 
typedef struct Student2 
{ 
int a; 
}stu2;

A:

事实上,这个东西是从C语言中遗留过来的,typedef可以定义新的复合类型或给现有类型起一个别名,在C语言中,如果你使用 
struct xxx 
{ 
}; 的方法,使用时就必须用 struct xxx var 来声明变量,而使用 
typedef struct 
{ 
}的方法 就可以写为 xxx var; 
不过在C++中已经没有这回事了,无论你用哪一种写法都可以使用第二种方式声明变量,这个应该算是C语言的糟粕。

用法小结

第一、四个用途

用途一:

定义一种类型的别名,而不只是简单的宏替换。可以用作同时声明指针型的多个对象。比如:
char* pa, pb; // 这多数不符合我们的意图,它只声明了一个指向字符变量的指针, 
// 和一个字符变量;
以下则可行:
typedef char* PCHAR; // 一般用大写
PCHAR pa, pb; // 可行,同时声明了两个指向字符变量的指针
虽然:
char *pa, *pb;
也可行,但相对来说没有用typedef的形式直观,尤其在需要大量指针的地方,typedef的方式更省事。

用途二:

用在旧的C的代码中(具体多旧没有查),帮助struct。以前的代码中,声明struct新对象时,必须要带上struct,即形式为: struct 结构名 对象名,如:
struct tagPOINT1
{
int x;
int y;
};
struct tagPOINT1 p1;

而在C++中,则可以直接写:结构名 对象名,即:
tagPOINT1 p1;

估计某人觉得经常多写一个struct太麻烦了,于是就发明了:
typedef struct tagPOINT
{
int x;
int y;
}POINT;

POINT p1; // 这样就比原来的方式少写了一个struct,比较省事,尤其在大量使用的时候

或许,在C++中,typedef的这种用途二不是很大,但是理解了它,对掌握以前的旧代码还是有帮助的,毕竟我们在项目中有可能会遇到较早些年代遗留下来的代码。

用途三:

用typedef来定义与平台无关的类型。
比如定义一个叫 REAL 的浮点类型,在目标平台一上,让它表示最高精度的类型为:
typedef long double REAL; 
在不支持 long double 的平台二上,改为:
typedef double REAL; 
在连 double 都不支持的平台三上,改为:
typedef float REAL; 
也就是说,当跨平台时,只要改下 typedef 本身就行,不用对其他源码做任何修改。
标准库就广泛使用了这个技巧,比如size_t。
另外,因为typedef是定义了一种类型的新别名,不是简单的字符串替换,所以它比宏来得稳健(虽然用宏有时也可以完成以上的用途)。

用途四:

为复杂的声明定义一个新的简单的别名。方法是:在原来的声明里逐步用别名替换一部分复杂声明,如此循环,把带变量名的部分留到最后替换,得到的就是原声明的最简化版。举例:

1. 原声明:int *(*a[5])(int, char*);
变量名为a,直接用一个新别名pFun替换a就可以了:
typedef int *(*pFun)(int, char*); 
原声明的最简化版:
pFun a[5];

2. 原声明:void (*b[10]) (void (*)());
变量名为b,先替换右边部分括号里的,pFunParam为别名一:
typedef void (*pFunParam)();
再替换左边的变量b,pFunx为别名二:
typedef void (*pFunx)(pFunParam);
原声明的最简化版:
pFunx b[10];

3. 原声明:doube(*)() (*e)[9]; 
变量名为e,先替换左边部分,pFuny为别名一:
typedef double(*pFuny)();
再替换右边的变量e,pFunParamy为别名二
typedef pFuny (*pFunParamy)[9];
原声明的最简化版:
pFunParamy e;

理解复杂声明可用的“右左法则”:
从变量名看起,先往右,再往左,碰到一个圆括号就调转阅读的方向;括号内分析完就跳出括号,还是按先右后左的顺序,如此循环,直到整个声明分析完。举例:
int (*func)(int *p);
首 先找到变量名func,外面有一对圆括号,而且左边是一个*号,这说明func是一个指针;然后跳出这个圆括号,先看右边,又遇到圆括号,这说明 (*func)是一个函数,所以func是一个指向这类函数的指针,即函数指针,这类函数具有int*类型的形参,返回值类型是int。
int (*func[5])(int *);
func 右边是一个[]运算符,说明func是具有5个元素的数组;func的左边有一个*,说明func的元素是指针(注意这里的*不是修饰func,而是修饰 func[5]的,原因是[]运算符优先级比*高,func先跟[]结合)。跳出这个括号,看右边,又遇到圆括号,说明func数组的元素是函数类型的指 针,它指向的函数具有int*类型的形参,返回值类型为int。

也可以记住2个模式:
type (*)(....)函数指针 
type (*)[]数组指针

第二、两大陷阱

陷阱一:

记住,typedef是定义了一种类型的新别名,不同于宏,它不是简单的字符串替换。比如:
先定义:
typedef char* PSTR;
然后:
int mystrcmp(const PSTR, const PSTR);

const PSTR实际上相当于const char*吗?不是的,它实际上相当于char* const。
原因在于const给予了整个指针本身以常量性,也就是形成了常量指针char* const。
简单来说,记住当const和typedef一起出现时,typedef不会是简单的字符串替换就行。

陷阱二:

typedef在语法上是一个存储类的关键字(如auto、extern、mutable、static、register等一样),虽然它并不真正影响对象的存储特性,如:
typedef static int INT2; //不可行
编译将失败,会提示“指定了一个以上的存储类”。

以上资料出自: http://blog.sina.com.cn/s/blog_4826f7970100074k.html  作者:赤龙

第三、typedef 与 #define的区别

案例一:

通常讲,typedef要比#define要好,特别是在有指针的场合。请看例子:

typedef char *pStr1;

#define pStr2 char *;

pStr1 s1, s2;

pStr2 s3, s4;

在上述的变量定义中,s1、s2、s3都被定义为char *,而s4则定义成了char,不是我们所预期的指针变量,根本原因就在于#define只是简单的字符串替换而typedef则是为一个类型起新名字。

案例二:

下面的代码中编译器会报一个错误,你知道是哪个语句错了吗?

typedef char * pStr;

char string[4] = "abc";

const char *p1 = string;

const pStr p2 = string;

p1++;

p2++;

是p2++出错了。这个问题再一次提醒我们:typedef和#define不同,它不是简单的文本替换。上述代码中const pStr p2并不等于const char * p2。const pStr p2和const long x本质上没有区别,都是对变量进行只读限制,只不过此处变量p2的数据类型是我们自己定义的而不是系统固有类型而已。因此,const pStr p2的含义是:限定数据类型为char *的变量p2为只读,因此p2++错误。

第四部分资料:使用 typedef 抑制劣质代码

猜你喜欢

转载自blog.csdn.net/totosj/article/details/78593193