高斯整数 / 费马平方和定理 / 拉格朗日的四平方定理

一、高斯整数

形如 。(其中a,b是整数)的复数被称为高斯整数,高斯整数全体记作Z[i]。注意到若 γ=a+bi 是高斯整数,则它是满足如下方程的代数整数:γ^{2}

通常我们使用希腊字母来表示高斯整数,例如α,β,γ和δ。注意到若 n 是一个整数,则 n=n+0i 也是高斯整数。当我们讨论高斯整数的时候,把通常的整数称为有理整数。

加、减、乘运算

高斯整数在加、减、乘运算下是封闭的,正如下面定理所述。

定理1:设 α=x+iy 和 β=w+iz 是高斯整数,其中 x,y,w 和 z 是有理整数,则 α+β,α-β 和 αβ 都是高斯整数。

虽然高斯整数在加、减和乘运算下封闭,但是他们在除法运算下并不封闭,这一点与有理整数类似。此外,若 α=a+bi 是高斯整数,则a的范数 N(α)=a^{2}+b^{2} 是非负有理整数。

整除性

我们可以像研究有理整数那样去研究高斯整数。整数的许多基本性质可以直接类推到高斯整数上。要讨论高斯整数的这些性质,我们需要介绍高斯整数类似于通常整数的一些概念。特别地,我们需要说明一个高斯整数整除另一个高斯整数的意义,并给出高斯素数的定义。

定义1:设 α 和 β 是高斯整数,我们称α整除β,是指存在一个高斯整数 γ 使得β=αγ。若α整除β,我们记作α|β ;若α 不整除β ,记作αβ 。

高斯整数的整除也满足有理整数整除的一些相同的性质。例如,若α,β和γ 是高斯整数,α|β,β|γ,则α|γ。再者,若α,β,γ,ν和μ 是高斯整数,γ|μ,γ|β,则γ|(μα+νβ)。

高斯素数

1, −1, i及−i都是高斯整数环里面的单位元。除此之外,在高斯整环里面不能因子分解的数称为高斯素数。高斯素数分为两类,其中一类是形式为4n+3(n是整数)的普通素数,如3,7等,它们在高斯整环里面也不能够因子分解。但是所有形式是4n+1的普通素数如5,13等,在高斯整环里面都可以唯一因子分解成两个共轭的高斯素数的乘积,如5=(2+i)(2-i)。需要注意的是,这里我们也可以写成5=(1+2i)(1-2i),这个是因为(2-i)i=1+2i,而i是单位元,所以我们可以认为这两种分解是等价的。此外,素数2也可以分解,即2=(1+i)(1-i)。

二、费马平方和定理

费马平方和定理是指由法国数学家费马在1640年提出的一个猜想,但他没有提出有力的数学证明,1747年,瑞士数学家莱昂哈德•欧拉提出证明后成为定理。

费马平方和定理的表述是:奇质数能表示为两个平方数之和的充分必要条件是该素数被4除余1。

费马二平方定理(Fermat's Two Squares Theorem)

费马二平方定理是指除了2这个特殊的素数,所有的素数都可以分两类:被4除余1的素数,如5,13,17,29,37,41;第二类则是被4除余3的素数如3,7,11,19,23,31.第一类素数都能表示为两个整数的平方和,第二类都不能。

费马二平方定理指出,当且仅当或时,素数可以表示为两个非零平方之和。 并且这种表示是唯一的。

三、拉格朗日四平方定理(Lagrange's four-square theorem)

拉格朗日的四平方定理,也称为Bachet猜想,由Diophantus陈述缺乏必要条件而推论得出。它指出,每一个正整数可以写成的总和至多四个正方形。尽管该定理由费马使用无限下降来证明,但该证明被抑制了。欧拉无法证明该定理。拉格朗日(Lagrange)于1770年给出了第一个公开的证明,并利用了欧拉四方形恒等式

拉格朗日的四平方定理(也称为Bachet猜想)指出,每个自然数都可以表示为四个整数平方之和。 其中四个数字是整数。它是費馬多邊形數定理華林問題的特例。

发布了119 篇原创文章 · 获赞 152 · 访问量 25万+

猜你喜欢

转载自blog.csdn.net/weixin_40539125/article/details/102674473