Analog Circuit

Note of Analog Circuit
Book: Microelectronic Circuits by Sedra Smith

Norton and Thevenin Circuit

Find Equivalent R e q R_{eq} :

  1. Apply test source V T V_T
  2. Measure test current I T I_T
  3. R e q R_{eq} = V T / I T V_T/I_T .

(a)Thevenin (b) Norton
Thevenin:

  1. V T H = V O C V_{TH} = V_{OC}
  2. zero out independent sources (0 voltage = short circuit, 0 amplititude = open circuit)
  3. Find R T H R_{TH}

Norton:

  1. I N = V T H / R T H , R N = R T H I_N=V_{TH}/R_{TH}, R_N=R_{TH}
  2. or short circuited, I N = I O C I_N=I_{OC}

Amplifiers

Generic circuit model of Linear Amplifier

Amplifier Model
R i n = R_{in} = input resistance
R o u t = R_{out} = output resistance
A v o = A_{vo} = open loop voltage gain
*Note: Linear amplifier will not change the frequency of input voltage.

v o v s = A v o R i n R i n + R s R L R L + R o u t \dfrac{v_o}{v_s} = A_{vo}\dfrac{R_{in}}{R_{in}+R_s}\dfrac{R_{L}}{R_{L}+R_{out}}

desire: large R i n R_{in} , small R o u t R_{out} , large A v o A_{vo}

Laplace Transform

A signal can be considered as considered as superpostion of many sinusoids.
Time domain: v ( t ) = v 0 cos ( ω t + ϕ ) v(t)=v_0\cos(\omega t+\phi)
Frequency domain: Real part of v 0 ϕ v_0 \angle \phi

The formula for Laplace transform is:
F ( s ) = t = 0 + f ( t ) e s t d t , F(s)=\int_{t=0^-}^{+\infty}f(t)e^{-st}\mathrm{d}t, where s = j ω s=j\omega , with requirement:

  • Integral must converge
  • f ( t < 0 ) = 0 f(t<0)=0
properties Equation
Time dreivative f ( t ) s F ( s ) f ( 0 + ) f'(t) \Leftrightarrow sF(s)-f(0^+)
Convolution F 1 ( s ) F 2 ( s ) ( f 1 f 2 ) ( t ) = 0 t f 1 ( τ ) f 2 ( t τ ) d t F_1(s)F_2(s)\Leftrightarrow (f_1*f_2)(t)=\int_0^tf_1(\tau)f_2(t-\tau)\mathrm{d}t
Initial value theorem f ( 0 + ) = lim s s F ( s ) f(0^+)=\lim_{s\rightarrow\infty}sF(s)
Final value theorem f ( ) = lim s 0 s F ( s ) f(\infty)=\lim_{s\rightarrow0}sF(s)

In frequency domain,
the impedance of L and C is
L: Ls
C:1/(Cs)

Bode Plot

How to draw bode plot:
http://lpsa.swarthmore.edu/Bode/BodeReviewRules.html
Summary from http://voer.edu.vn/m/frequency-response/917b3b8a

Sallen & Key Method to Design Circuit

Essential Equation:
T 1 = R 1 C 1 ω 0 T_1 = R_1C_1\omega_0
T 2 = R 2 C 2 ω 0 T_2 = R_2C_2\omega_0

Non-ideal Op-amps

Ideal Op-amp

Based on the Op-amp model, there are 3 assumptions:

  1. A 0 v + = v A_0\rightarrow \infty \Rightarrow v_+=v_-
  2. R i n = i i n = 0 R_{in} = \infty \Rightarrow i_{in}=0
  3. R o u t = 0 R_{out}=0 \Rightarrow no voltage drop across R o u t R_{out}

3 basic configuration:

name equ Figure.
Inverting amplifier v o u t v i n = R 2 R 1 \dfrac{v_{out}}{v_{in}}=-\dfrac{R_2}{R_1} 在这里插入图片描述
Non-inverting v o u t v i n = 1 + R 2 R 1 \dfrac{v_{out}}{v_{in}}=1+\dfrac{R_2}{R_1} 在这里插入图片描述
voltage folower v o u t v i n = 1 \dfrac{v_{out}}{v_{in}}=1 在这里插入图片描述

Non-ideal Op-amp

  1. Finite open-loop gain
    Non inverting: feed back factor f = R 1 R 1 + R 2 f=\dfrac{R_1}{R_1+R_2} , v o u t / v i n = A 0 1 + A 0 f v_{out}/v_{in}=\dfrac{A_0}{1+A_0f}
    Inverting: G = R 2 / R 1 1 + ( 1 + R 2 / R 1 ) / A 0 G=\dfrac{-R_2/R_1}{1+(1+R_2/R_1)/A_0}
  2. Finite R o u t 0 R_{out}\neq0
    Turn off the input voltage source and find R o u t R'_{out}
    Non-inverting amplifier: R o u t = R o u t 1 + A 0 f R'_{out}=\dfrac{R_{out}}{1+A_0f}
  3. Finite R i n R_{in}
    i + = i 0 i_+=i_-\neq0
  4. Common mode rejection ratio CMRR
    v i d = v + v v_{id}=v_+-v_-
    v i c = v + + v 2 v_{ic}=\dfrac{v_++v_-}{2}
    v o u t = A 0 [ v i d + v i c C M R R ] v_{out}=A_0[v_{id}+\dfrac{v_{ic}}{CMRR}] , C M R R = A 0 A c m CMRR=\dfrac{A_0}{A_{cm}}
    Voltage follower: v o u t v i n = A 0 ( 1 + 1 / 2 C M R R ) 1 + A 0 ( 1 1 / 2 C M R R ) \dfrac{v_{out}}{v_{in}}=\dfrac{A_0(1+1/2CMRR)}{1+A_0(1-1/2CMRR)}
    Application: Difference Amplifier
    在这里插入图片描述
    The circuit can be solved with superposition. To make it a differential amplifier, we ensure that R 2 R 1 = R 4 R 3 \dfrac{R_2}{R_1}=\dfrac{R_4}{R_3} , through calculation, A d = R 2 R 1 A_d=\dfrac{R_2}{R_1} .
    If v I 1 = v I 2 = v I c m v_{I1}=v_{I2}=v_{Icm} ,在这里插入图片描述
  5. Input Offset Voltage
    Model the residual v o u t v_{out} when v i n = 0 v_{in}=0 as a source at the input +:
    在这里插入图片描述
    Modified v o u t = A 0 [ v i d + v i c C M R R + v o s ] v_{out}=A_0[v_{id}+\dfrac{v_{ic}}{CMRR}+v_{os}]
    *this can be trimmed to zero by connecting a potentiometer to the two offset-nulling terminals.
    在这里插入图片描述
  6. Input bias current
    在这里插入图片描述
    I B 1 , I B 2 I_{B1}, I_{B2} are small constant current, I B 1 I B 2 I_{B1}\neq I_{B2} . Not the same as i i n i_{in} .
    I B = I B 1 + I B 2 2 I_B=\dfrac{I_{B1}+I_{B2}}{2}
    I O S = I B 1 I B 2 I_{OS}=|I_{B1}-I_{B2}|
  7. Clipping
    Output is limited by + V C C +V_{CC} and V E E -V_{EE} , introduce other frequency component.
  8. Bandwidth
    Open loop condition:
    open loop gain is frequency dependent
    A ( s ) = A 0 1 + s / ω p A(s)=\dfrac{A_0}{1+s/\omega_p}
    ω t \omega_t = frequency when A = 1 |A|=1
    f t f_t =unity gain bandwidth
    Suppose ω t ω p \omega_t \gg \omega_p , we have ω t = A 0 ω p \omega_t=A_0\omega_p
    Closed loop condition
    For inverting circuit:
    在这里插入图片描述
    Assume A 0 1 + R 2 R 1 A_0\gg 1+\dfrac{R_2}{R_1} , can get rid of the mid term. ω 3 d B = ω t 1 + R 2 / R 1 \omega_{3dB}=\dfrac{\omega_t}{1+R_2/R_1}
    For non-inverting circuit:
    在这里插入图片描述
    Note: gain-bandwidth product = f t f_t .
  9. Slew rate
    Come from the finite current available to charge and discharge internal capacitance.
    S R = d v 0 d t m a x SR=\dfrac{\mathrm{d}v_0}{\mathrm{d}t}|_{\mathrm{max}}
    Simple example: if v o u t ( t ) = v m sin ( ω t ) v_{out}(t) = v_m\sin(\omega t) , S R m a x ( v o u t ( t ) ) = v m ω SR\geq max(v'_{out}(t))=v_m\omega

Internal of an Op-amp

在这里插入图片描述
v 3 = μ G m R ( v 2 v 1 ) v_3=\mu G_m R(v_2-v_1)

Diodes

p type (acceptor): positive charge carrier, releases as a “hole”. e.g. Boron(+3)
n type (donor): negative charge carrier, mobile electron, e.g. Phosphorous(+5)
concentration: number of charge carriers per unit volume( [ c m 3 ] [cm^{-3}] )

PN junction diode

在这里插入图片描述
在这里插入图片描述
p type region has extra hole, and q type region has extra electron.

  1. The hole will be filled with electrons gradually due to diffusion. The middle area is already charged, called depletion or space charge region.
  2. An electromagnetic field formed. A built-in voltage was introduced, which stops diffusion.
    E m a x = q N D x n ϵ s ϵ 0 = q N A x p ϵ s ϵ 0 E_{max}=\dfrac{qN_Dx_n}{\epsilon_s\epsilon_0}=\dfrac{qN_Ax_p}{\epsilon_s\epsilon_0} , ϵ s = \epsilon_s= electrical permittivity of silicon
    W = x n + x p = 2 ϵ s ϵ 0 q ( 1 / N A + 1 / N D ) ( v b i v A ) W=x_n+x_p=\sqrt{\dfrac{2\epsilon_s\epsilon_0}{q}(1/N_A+1/N_D)(v_{bi}-v_A)}
    v b i = k B T q ln ( N D N A n i 2 ) v_{bi}=\dfrac{k_BT}{q}\ln(\dfrac{N_DN_A}{n_i^2})
  3. Apply positive voltage to p side, when v A > v b i v_A>v_{bi} , there will be no depletion area and large current can flow.
  4. When a very large negative voltage applied, the junction will break down due to zener effect.
  5. The I-V relation:
    I D = I S [ e q v D / n k T 1 ] I S e v D / v T = ( under room temperature ) I S [ e v D / 0.0258 1 ] I_D=I_S[e^{qv_D/nkT}-1]\approx I_Se^{v_D/v_T}=(\text{under room temperature})I_S[e^{v_D/0.0258}-1]

Temperature Dependency

  1. Forward Bias I S I_S : doubles every 5 C 5^\circ C raise in temperature
    [Approximately Equivalent: V D V_D decreases by 10 m V 10mV , not very accurate]
  2. Reverse Bias I R -I_R : doubles for every 1 0 C 10^\circ C raise in temperature
    I D I R I_D\approx-I_R (independent of voltage)

Solve Circuits with Diode

  1. Guess region
  2. Solve circuit
  3. Check Assumption

Usage

  1. Half-wave Rectifier
  2. Full-wave Rectifier
  3. Peak detector
  4. RC Load-peak Rectifier
发布了6 篇原创文章 · 获赞 5 · 访问量 258

猜你喜欢

转载自blog.csdn.net/weixin_44459654/article/details/87515010