斐波那契F(n+1)*F(n-1) - F(n^2) =(-1)^n的证明

证法一:

A = 1 + 5 2 A=\frac{1+\sqrt{5}}{2} , B = 1 5 2 B=\frac{1-\sqrt{5}}{2}

由斐波那契数列的通项公式 F ( n ) = A n + B n 5 F(n)=\frac{A^n+B^n}{\sqrt{5}} 可得

F ( n + 1 ) F ( n 1 ) = 1 5 ( A n + 1 + B n + 1 ) ( A n 1 + B n 1 ) F(n+1)F(n-1)= \frac{1}{5}(A^{n+1}+B^{n+1})(A^{n-1}+B^{n-1})

F ( n ) 2 = 1 5 ( A n + B n ) 2 F(n)^2=\frac{1}{5}(A^n+B^n)^2

证明:

F ( n + 1 ) F ( n 1 ) F ( n ) 2 F(n+1)F(n-1)-F(n)^2

= 1 5 ( 2 A n B n A n + 1 B n 1 A n 1 B n + 1 ) =-\frac{1}{5}(2A^nB^n-A^{n+1}B^{n-1}-A^{n-1}B^{n+1})

= 1 5 [ A n B n 1 ( B A ) A n 1 B n ( A B ) ] =-\frac{1}{5}[A^nB^{n-1}(B-A)-A^{n-1}B^n(A-B)]

= 1 5 ( A B ) ( A n B n 1 + A n B n ) =\frac{1}{5}(A-B)(A^nB^{n-1}+A^nB^n)

= 1 5 ( A + B ) ( A B ) A n 1 B n 1 =\frac{1}{5}(A+B)(A-B)A^{n-1}B^{n-1}

= 1 5 1 ( 1 ) ( ( 1 5 ) ( 1 + 5 ) 2 2 ) n 1 =\frac{1}{5}*1*(-1)*(\frac{(1-\sqrt{5})*(1+\sqrt{5})}{2*2})^{n-1}

= ( 1 ) ( 1 ) n 1 =(-1)*(-1)^{n-1}

扫描二维码关注公众号,回复: 8748398 查看本文章

= ( 1 ) n =(-1)^n

证法二:

在这里插入图片描述

发布了5 篇原创文章 · 获赞 21 · 访问量 4万+

猜你喜欢

转载自blog.csdn.net/qq_43134194/article/details/104056662