Android开发——监控造成UI卡顿的原因

0.  前言

Android只有主线程才能更新UI。如果界面1秒钟刷新少于60次,即FPS小于60,用户就会产生卡顿感觉。

Android使用消息机制进行UI更新的,如果在主线程handlerdispatchMessage方法进行了耗时操作,就会发生UI卡顿。

本文原创,转载请注明出处:http://blog.csdn.net/seu_calvin/article/details/63703559

 

1.  dispatchMessage方法在哪

dispatchMessage()是在Looper.loop()里调用,源码如下:

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        msg.target.dispatchMessage(msg);

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

所以说,第27行的代码就是可能发生UI卡顿的地方。注意这行代码的前后,有两个logging。也就是说在执行第27代码的前后,如果设置了logging,会分别打印出“>>>>> Dispatching to”和“<<<<< Finished to”这样的Log。这样就给我们监视两次Log之间的时间差,来判断是否发生了卡顿。


2.  设置logging

主要看一下21行的mLogging是什么,源码如下所示:

public final class Looper {
    private Printer mLogging;
    public void setMessageLogging(@Nullable Printer printer) {
        mLogging = printer;
    }
}
public interface Printer {
    void println(String x);
}

LoopermLogging是私有的,并且提供了setMessageLogging(@Nullable Printer printer)方法,所以我们可以自己实现一个Printer,在通过setMessageLogging()方法传入即可

public class AppContext extends Application {
    @Override
    public void onCreate() {
        super.onCreate();
	   Looper.getMainLooper().setMessageLogging(new Printer() {

            private static final String START = ">>>>> Dispatching";
            private static final String END = "<<<<< Finished";

            @Override
            public void println(String x) {
                if (x.startsWith(START)) {
                    LogMonitor.getInstance().startMonitor();
                }
                if (x.startsWith(END)) {
                    LogMonitor.getInstance().removeMonitor();
                }
            }
        });
    }
}

当我们设置了mLogging之后,loop()方法中就会回调logging.println,并将带有“>>>>> Dispatching to”和“<<<<< Finished to”的字符串传入,我们就可以拿到这两条信息。

如果“>>>>> Dispatching to”信号发生了,我们就假定发生了卡顿(这里我们设定1秒钟的卡顿判定阈值),并且发送一个延迟1秒钟的任务,这个任务就用于在子线程打印出造成卡顿的UI线程里的堆栈信息。而如果没有卡顿,即在1秒钟之内我们检测到了“<<<<< Finished to”信号,就会移除这个延迟1秒的任务。

 

3.  LogMonitor的实现

public class LogMonitor {
    private static LogMonitor sInstance = new LogMonitor();
    private HandlerThread mHandlerThread = new HandlerThread("log");
    private Handler mHandler;

    private LogMonitor() {
        mHandlerThread.start();
        mHandler = new Handler(mHandlerThread.getLooper());
    }

    private static Runnable mRunnable = new Runnable() {
        @Override
        public void run() {
            StringBuilder sb = new StringBuilder();
            StackTraceElement[] stackTrace = Looper.getMainLooper().getThread().getStackTrace();
            for (StackTraceElement s : stackTrace) {
                sb.append(s.toString() + "\n");
            }
            Log.e("TAG", sb.toString());
        }
    };

    public static LogMonitor getInstance() {
        return sInstance;
    }

    public void startMonitor() {
        mHandler.postDelayed(mRunnable, 1000);
    }

    public void removeMonitor() {
        mHandler.removeCallbacks(mRunnable);
    }

}

这里我们使用HandlerThread来构造一个HandlerHandlerThread继承自Thread,实际上就一个Thread,只不过它比普通的Thread多了一个Looper,对外提供自己这个Looper对象的get方法,然后创建Handler时将HandlerThread中的looper对象传入。这样我们的mHandler对象就是与HandlerThread这个非UI线程绑定的了,这样它处理耗时操作将不会阻塞UI

总之,如果UI线程阻塞超过1秒,就会在子线程中执行mRunnable,打印出UI线程当前的堆栈信息,如果处理消息没有超过1秒,则会实时的remove掉这个mRunnable

 

4.  测试

Activity中设置一个按钮,并且设置点击后睡3秒。便可以看见打印出的Log信息。帮助我们定位到耗时的地方。






发布了142 篇原创文章 · 获赞 1456 · 访问量 168万+

猜你喜欢

转载自blog.csdn.net/SEU_Calvin/article/details/63703559