机器学习实战 AdaBoost

#机器学习实战 AdaBoost

集成方法

1 Bagging
自举汇聚法(bootstrap aggregating),也称为bagging方法。Bagging对训练数据采用自举采样(boostrap sampling),即有放回地采样数据,主要思想:

从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)
每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)
2 Boosting
Boosting是一种与Bagging很类似的技术。Boosting的思路则是采用重赋权(re-weighting)法迭代地训练基分类器,主要思想:

每一轮的训练数据样本赋予一个权重,并且每一轮样本的权值分布依赖上一轮的分类结果。
基分类器之间采用序列式的线性加权方式进行组合。
3 Bagging、Boosting二者之间的区别
样本选择上:

Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。
Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。
样例权重:

Bagging:使用均匀取样,每个样例的权重相等。
Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。
预测函数:

Bagging:所有预测函数的权重相等。
Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。
并行计算:

Bagging:各个预测函数可以并行生成。
Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。
4 总结
这两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果,将不同的分类算法套入到此类算法框架中一定程度上会提高了原单一分类器的分类效果,但是也增大了计算量。

下面是将决策树与这些算法框架进行结合所得到的新的算法:

Bagging + 决策树 = 随机森林
AdaBoost + 决策树 = 提升树
Gradient Boosting + 决策树 = GBDT
集成方法众多,本文主要关注Boosting方法中的一种最流行的版本,即AdaBoost。

AdaBoost

1、计算样本权重
2、计算错误率
3、计算弱学习算法权重
4、更新样本权重
5、AdaBoost算法
在这里插入图片描述

基于单层决策树构建弱分类器

# -*-coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
"""
Author:
    Jack Cui
Blog:
    http://blog.csdn.net/c406495762
Zhihu:
    https://www.zhihu.com/people/Jack--Cui/
Modify:
    2017-10-10
"""
def loadSimpData():
    """
    创建单层决策树的数据集
    Parameters:
        无
    Returns:
        dataMat - 数据矩阵
        classLabels - 数据标签
    """
    datMat = np.matrix([[ 1. ,  2.1],
        [ 1.5,  1.6],
        [ 1.3,  1. ],
        [ 1. ,  1. ],
        [ 2. ,  1. ]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
    return datMat,classLabels
def showDataSet(dataMat, labelMat):
    """
    数据可视化
    Parameters:
        dataMat - 数据矩阵
        labelMat - 数据标签
    Returns:
        无
    """
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)                                             #转换为numpy矩阵
    data_minus_np = np.array(data_minus)                                         #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1])        #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1])     #负样本散点图
    plt.show()

if __name__ == '__main__':
    dataArr,classLabels = loadSimpData()
    showDataSet(dataArr,classLabels)

发布了11 篇原创文章 · 获赞 0 · 访问量 113

猜你喜欢

转载自blog.csdn.net/weixin_41898948/article/details/103530080