BloomFilter解析

BloomFilter是用位数组来表示一个集合,例如{s1,s2,s3,s4}那么现在保持的时候,就是用一个m位的位数组来表示该集合,存放的时候是对该集合中的一个元素做khash运算,运算结果是位数组下标,然后拿到该下标,将该下标对应的值设为1,要判断一个元素是否在这个集合中,也是通过对这个元素做khash运算,拿到数组下标,判断对应下标是否为1,如果不为1,那么肯定不包含在该集合中,如果为1,那么有可能包含在次集合中,不排除误差影响。

java代码为例,比如你生产一个BitSetadd数据的时候,通过一个getIndex函数来得到相应的集合元素中对应的keyhash函数值,存入一个int数组中,然后调用bitset.set(index)将对应位置设置为true。这样就相当于把对象存放进去了,然后如果要查找对应的元素是否在集合中,只需要也给掉getIndex函数,得到对应下标,判断对应下标下值是否为true,就可以知道该元素是否属于集合中了。

 

下面是网上copybloomfilter的算法解析:

    前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:

 

其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:

 

 

令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:

 

(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将pp’代入上式中,得:

 

相比p’和f’,使用pf通常在分析中更为方便。

最优的哈希函数个数

 

既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

 

 

 

先用pf进行计算。注意到f = exp(k ln(1 − e−kn/m)),我们令g = k ln(1 − e−kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成

 

根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)k (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中01各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

 

 

 

需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值pf。同样对于f’ = exp(k ln(1 − (1 − 1/m)kn))g’ = k ln(1 − (1 − 1/m)kn)p’ = (1 − 1/m)kn,我们可以将g’写成

同样根据对称性法则可以得到当p = 1/2时,g’取得最小值。

位数组的大小

 

下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意n个元素的集合。假设全集中共有u个元素,允许的最大错误率为є,下面我们来求位数组的位数m

 

 

 

假设X为全集中任取n个元素的集合,F(X)是表示X的位数组。那么对于集合X中任意一个元素x,在s = F(X)中查询x都能得到肯定的结果,即s能够接受x。显然,由于Bloom Filter引入了错误,s能够接受的不仅仅是X中的元素,它还能够є (u - n)false positive。因此,对于一个确定的位数组来说,它能够接受总共n + є (u - n)个元素。在n + є (u - n)个元素中,s真正表示的只有其中n个,所以一个确定的位数组可以表示

个集合。m位的位数组共有2m个不同的组合,进而可以推出,m位的位数组可以表示

  

 

个集合。全集中n个元素的集合总共有

个,因此要让m位的位数组能够表示所有n个元素的集合,必须有

即:

上式中的近似前提是nєu相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于є的情况下,m至少要等于n log2(1/є)才能表示任意n个元素的集合。

 

 

 

上一小节中我们曾算出当k = ln2· (m/n)时错误率f最小,这时f = (1/2)k = (1/2)mln2 / n。现在令fє,可以推出

这个结果比前面我们算得的下界n log2(1/є)大了log2 e 1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过єm至少需要取到最小值的1.44倍。

 

举个例子我们假设错误率为0.01,则此时m应大概是n13倍。这样k大概是8个。

猜你喜欢

转载自zlx19900228.iteye.com/blog/1018896