用rnn进行mnist数据集的处理

1. 常用类

class tf.contrib.rnn.BasicLSTMCell

BasicLSTMCell 是最简单的一个LSTM类,没有实现clipping,projection layer,peep-hole等一些LSTM的高级变种,仅作为一个基本的basicline结构存在,如果要使用这些高级变种,需用class tf.contrib.rnn.LSTMCell这个类。

使用方式:

lstm = rnn.BasicLSTMCell(lstm_size, forget_bias=1.0, state_is_tuple=True)
  • 1

Args:

  • num_units: int, The number of units in the LSTM cell.

  • forget_bias: float, The bias added to forget gates.

  • state_is_tuple: If True, accepted and returned states are 2-tuples of the c_state and m_state. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated.

  • activation: Activation function of the inner states.

说明:

  • num_units 是指一个Cell中神经元的个数,并不是循环层的Cell个数。这里有人可能会疑问:循环层的Cell数目怎么表示?答案是通过如下代码中的 time_step_size确定(X_split 中划分出的arrays数量为循环层的Cell个数):
    X_split = tf.split(XR, time_step_size, 0)
  • 1
  • 在任意时刻 tt ,LSTM Cell会产生两个内部状态 ctcththt (关于RNN与LSTM的介绍可参考:循环神经网络与LSTM)。当state_is_tuple=True时,上面讲到的状态ctcththt 就是分开记录,放在一个二元tuple中返回,如果这个参数没有设定或设置成False,两个状态就按列连接起来返回。官方说这种形式马上就要被deprecated了,所有我们在使用LSTM的时候要加上state_is_tuple=True。

class tf.contrib.rnn.DropoutWrapper

RNN中的dropout和cnn不同,在RNN中,时间序列方向不进行dropout,也就是说从t-1时刻的状态传递到t时刻进行计算时,这个中间不进行memory的dropout;如下图所示,Dropout仅应用于虚线方向的输入,即仅针对于上一层的输出做Dropout。

图 1

因此,我们在代码中定义完Cell之后,在Cell外部包裹上dropout,这个类叫DropoutWrapper,这样我们的Cell就有了dropout功能!

lstm = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=keep_prob)
  • 1

Args:

  • cell: an RNNCell, a projection to output_size is added to it.

  • input_keep_prob: unit Tensor or float between 0 and 1, input keep probability; if it is float and 1, no input dropout will be added.

  • output_keep_prob: unit Tensor or float between 0 and 1, output keep probability; if it is float and 1, no output dropout will be added.

  • seed: (optional) integer, the randomness seed.

class tf.contrib.rnn.MultiRNNCell

如果希望整个网络的层数更多(例如上图表示一个两层的RNN,第一层Cell的output还要作为下一层Cell的输入),应该堆叠多个LSTM Cell,tensorflow给我们提供了MultiRNNCell,因此堆叠多层网络只生成这个类即可:

lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * num_layers, state_is_tuple=True)
  • 1

2. 代码

MNIST数据集的格式与数据预处理代码 input_data.py的讲解请参考 :Tutorial (2)

# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.contrib import rnn

import numpy as np
import input_data

# configuration
#                        O * W + b -> 10 labels for each image, O[? 28], W[28 10], B[10]
#                       ^ (O: output 28 vec from 28 vec input)
#                       |
#      +-+  +-+       +--+
#      |1|->|2|-> ... |28| time_step_size = 28
#      +-+  +-+       +--+
#       ^    ^    ...  ^
#       |    |         |
# img1:[28] [28]  ... [28]
# img2:[28] [28]  ... [28]
# img3:[28] [28]  ... [28]
# ...
# img128 or img256 (batch_size or test_size 256)
#      each input size = input_vec_size=lstm_size=28

# configuration variables
input_vec_size = lstm_size = 28 # 输入向量的维度
time_step_size = 28 # 循环层长度

batch_size = 128
test_size = 256

def init_weights(shape):
    return tf.Variable(tf.random_normal(shape, stddev=0.01))


def model(X, W, B, lstm_size):
    # X, input shape: (batch_size, time_step_size, input_vec_size)
    # XT shape: (time_step_size, batch_size, input_vec_size)
    XT = tf.transpose(X, [1, 0, 2])  # permute time_step_size and batch_size,[28, 128, 28]

    # XR shape: (time_step_size * batch_size, input_vec_size)
    XR = tf.reshape(XT, [-1, lstm_size]) # each row has input for each lstm cell (lstm_size=input_vec_size)

    # Each array shape: (batch_size, input_vec_size)
    X_split = tf.split(XR, time_step_size, 0) # split them to time_step_size (28 arrays),shape = [(128, 28),(128, 28)...]


    # Make lstm with lstm_size (each input vector size). num_units=lstm_size; forget_bias=1.0
    lstm = rnn.BasicLSTMCell(lstm_size, forget_bias=1.0, state_is_tuple=True)

    # Get lstm cell output, time_step_size (28) arrays with lstm_size output: (batch_size, lstm_size)
    # rnn..static_rnn()的输出对应于每一个timestep,如果只关心最后一步的输出,取outputs[-1]即可
    outputs, _states = rnn.static_rnn(lstm, X_split, dtype=tf.float32)  # 时间序列上每个Cell的输出:[... shape=(128, 28)..]

    # Linear activation
    # Get the last output
    return tf.matmul(outputs[-1], W) + B, lstm.state_size # State size to initialize the stat

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 读取数据

# mnist.train.images是一个55000 * 784维的矩阵, mnist.train.labels是一个55000 * 10维的矩阵
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels

# 将每张图用一个28x28的矩阵表示,(55000,28,28,1)
trX = trX.reshape(-1, 28, 28) 
teX = teX.reshape(-1, 28, 28) 

X = tf.placeholder("float", [None, 28, 28])
Y = tf.placeholder("float", [None, 10])

# get lstm_size and output 10 labels
W = init_weights([lstm_size, 10])  # 输出层权重矩阵28×10
B = init_weights([10])  # 输出层bais

py_x, state_size = model(X, W, B, lstm_size)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1)

session_conf = tf.ConfigProto()
session_conf.gpu_options.allow_growth = True

# Launch the graph in a session
with tf.Session(config=session_conf) as sess:
    # you need to initialize all variables
    tf.global_variables_initializer().run()

    for i in range(100):
        for start, end in zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)):
            sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})

        test_indices = np.arange(len(teX))  # Get A Test Batch
        np.random.shuffle(test_indices)
        test_indices = test_indices[0:test_size]

        print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
                         sess.run(predict_op, feed_dict={X: teX[test_indices]})))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97

图 1

猜你喜欢

转载自blog.csdn.net/tianguiyuyu/article/details/80175627