论文笔记:SRCNN

1.intro

  图像超分辨率问题是在CV领域一个经典的问题。目前(2014)最先进的方法大多是基于实例的,主要包括利用图片的内部相似性,或者学习低分辨率高分辨率样本对的映射函数。后者往往需要大量的数据,但是目前有效性不足以令人满意并且无法精简模型。其中典型的是基于稀疏编码的方法,包括以下几步:先从图像中密集地抽取patch并进行预处理,然后使用low-resolution dict对patch进行编码,得到稀疏的coefficients,被换成high-resolution dict用于重建高分辨率patch,对这些patch进行合成或平均以得到高分辨率图像。这些方法将注意力都集中在对dict的学习和优化或者其他建模方法,其余步骤很少得到优化和考虑。

  本篇文章我们提出,上述步骤作用相当于一个卷积神经网络。我们考虑直接在高低分辨率图像中建立一个端到端映射的CNN,用隐藏层取代对dict的学习。在这个过程中,patch的抽取和聚合也能够得到应有的优化。这就是SRCNN,其有以下优点:1.模型简单,精度高。2.速度快。3.随着数据集的增大,重建质量还可以增强。但是在以往方法中,数据集增大会带来很多挑战。

  本文主要工作:

  1.针对超分辨问题提出一个基于端到端映射的卷积神经网络,图像预处理后处理更少。

  2.基于深度学习的SR方法和传统的基于稀疏编码方法的比较。

  3.论证了深度学习在SR问题中可以被应用,且可以获得较好的质量和速度。

2.related work

2.1 图像超分辨

  一类图像超分辨方法时学习高低分辨率patch间的映射,这些工作的主要区别在于学习一些将高低分辨率patch关联起来的dict和manifold space方面,和如何在此空间内进行方案表示方面。

  Freeman的工作:dict里的元素直接代表高低分辨率的patch对,在低分辨率空间中找到input patch的最近邻居(NN),对应到相应的高分辨率patch。

  Chang的工作:使用manifold embedding technique代替NN策略

  Yang的工作:NN对应进展到更为先进的稀疏编码方式。这种稀疏编码方式及其改进是目前最先进的SR方法。

2.2 CNN

  CNN最近因其在图像分类领域的成功而变得火热。

2.3 图像复原领域的深度学习

  已经有一些使用深度学习技术在图像复原领域应用的例子:多层感知机用于自然图像去噪和post-deblurring去噪,CNN用于自然图像去噪和消除噪声图案。图像超分领域还并未得到应用。

3.SRCNN

3.1 

猜你喜欢

转载自www.cnblogs.com/cs-zzc/p/11484552.html