频谱感知2:衰落信道上未知信号的能量检测

本文主要内容摘自下面文献:
[1] Fadel F. Digham (2007). “On the Energy Detection of Unknown Signals Over Fading Channels.” IEEE TRANSACTIONS ON COMMUNICATION 55(1): 4.
[2] H.Urkowitz (1967). “Energy Detection of Unknown Deterministic Signals.” Proceedings of the IEEE 55(4): 9.【参见博文《合作频谱感知:未知确定信号的能量检测》】
[3] Zhi Quan, S. C., and Ali H. Sayed (2008). “Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks.” IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2(1): 13.
[4] 博文《卡方分布》

1、系统模型

  Urkowitz (1967)一文中,分别讨论了低通和带通两种情况。这里主要集中讨论带通情况。设发送的低通信号为 S L P ( t ) = s c ( t ) + j s s ( t ) S_{\rm LP}(t)=s_c(t)+js_s(t) ,信道为 h = α e j θ h=\alpha e^{j\theta} ,则带通接收信号为

r ( t ) = { R { [ h s L P ( t ) + n L P ( t ) ] e j 2 π f c t } : H 1 R { n L P ( t ) e j 2 π f c t } : H 0 r(t)={\Large\{ }\begin{aligned} {\mathcal R}\{[hs_{\rm LP}(t)+n_{\rm LP}(t)]e^{j2\pi f_ct}\}:H_1\\ {\mathcal R}\{n_{\rm LP}(t)e^{j2\pi f_ct}\}:H_0 \end{aligned} 此时,定义信噪比为 γ = α 2 E s N 0 \gamma =\frac{\alpha^2 E_s}{N_0}
  根据Urkowitz (1967),我们可以得到判决变量为
r = 2 N 0 0 T r 2 ( t ) d t . r=\frac{2}{N_0}\int_{0}^{T}r^2(t)dt.
下面我们分别针对 H 0 H_0 H 1 H_1 进行推导。


  • H 0 H_0
       带通噪声可以表示为
    n ( t ) = n c ( t ) cos ( 2 π f c t ) n s ( t ) sin ( 2 π f c t ) , n(t)=n_c(t)\cos(2\pi f_ct)-n_s(t)\sin(2\pi f_ct), 因此,判决变量为
    r = 2 N 0 0 T n 2 ( t ) d t = 1 N 0 0 T [ n c 2 ( t ) + n s 2 ( t ) ] d t \begin{aligned} r&=\frac{2}{N_0}\int_{0}^{T}n^2(t)dt\\ &=\frac{1}{N_0}\int_{0}^{T}\left[ n_c^2(t)+n_s^2(t)\right]dt\\ \end{aligned} 进一步,我们把 n c ( t ) n_c(t) n s ( t ) n_s(t) 分别用有限个抽样样值表示,注意这时的抽样速率为 W W 而非 2 W 2W ,若 N = 2 W T N=2WT ,则有 n c ( t ) = i = 1 N / 2 n c i s i n c ( W t i ) n s ( t ) = i = 1 N / 2 n s i s i n c ( W t i ) , \begin{aligned} n_c(t)&=\sum_{i=1}^{N/2}n_{ci}{\rm sinc}\left(Wt-i \right)\\ n_s(t)&=\sum_{i=1}^{N/2}n_{si}{\rm sinc}\left(Wt-i \right), \end{aligned} 利用sinc函数的性质,我们可以得到

r = 1 N 0 W i = 1 N / 2 [ n c i 2 + n s i 2 ] = i = 1 N / 2 [ ( n c i N 0 W ) 2 + ( n s i N 0 W ) 2 ] r=\frac{1}{N_0W}\sum_{i=1}^{N/2}\left[ n_{ci}^2+n_{si}^2\right]=\sum_{i=1}^{N/2}\left[ \left(\frac{n_{ci}}{\sqrt{N_0W}}\right)^2+\left(\frac{n_{si}}{\sqrt{N_0W}}\right)^2\right] 满足中心 χ 2 \chi^2 分布,自由度为 2 T W 2TW


  • H 1 H_1
       低通等效信号为
    s L P ( t ) = s c ( t ) + j s s ( t ) , s_{\rm LP}(t)=s_c(t)+js_s(t), 等效低通信道为 h L P = α c + j α s h_{\rm LP}=\alpha_c+j\alpha_s ,则经过衰落信道后的低通等效接收信号(不含噪声)为
    s L P ( t ) = α c s c ( t ) + j α c s s ( t ) + j α s s c ( t ) α s s s ( t ) , s'_{\rm LP}(t)=\alpha_cs_c(t)+j\alpha_c s_s(t)+j\alpha_s s_c(t)-\alpha_ss_s(t), 则带通信号可以表示为
    s ( t ) = R [ s L P ( t ) e j 2 π f c t ] = [ α c s c ( t ) α s s s ( t ) ] cos ( 2 π f c t ) [ α c s s ( t ) + α s s c ( t ) ] sin ( 2 π f c t ) \begin{aligned} s'(t)&={\mathcal R}\left[ s'_{\rm LP}(t)e^{j2\pi f_ct} \right]\\ &=\left[ \alpha_cs_c(t)-\alpha_ss_s(t)\right]\cos(2\pi f_ct)-\left[\alpha_c s_s(t)+\alpha_s s_c(t)\right]\sin(2\pi f_ct)\\ \end{aligned} 由此,可以得到接收信号为
    r ( t ) = [ α c s c ( t ) α s s s ( t ) + n c ( t ) ] cos ( 2 π f c t ) [ α c s s ( t ) + α s s c ( t ) + n s ( t ) ] sin ( 2 π f c t ) = r c ( t ) cos ( 2 π f c t ) r s ( t ) sin ( 2 π f c t ) \begin{aligned} r(t)&=\left[ \alpha_cs_c(t)-\alpha_ss_s(t)+n_c(t)\right]\cos(2\pi f_ct)-\left[\alpha_c s_s(t)+\alpha_s s_c(t)+n_s(t)\right]\sin(2\pi f_ct)\\ &=r_c(t)\cos(2\pi f_ct)-r_s(t)\sin(2\pi f_ct) \end{aligned} 同理,可以用抽样样值表示
    r c ( t ) = i = 1 N / 2 [ α c s c i α s s s i + n c i ] s i n c ( W t i ) r s ( t ) = i = 1 N / 2 [ α c s s i + α s s c i + n s i ] s i n c ( W t i ) , \begin{aligned} r_c(t)&=\sum_{i=1}^{N/2}[\alpha_c s_{ci}-\alpha_s s_{si}+n_{ci}]{\rm sinc}\left(Wt-i \right)\\ r_s(t)&=\sum_{i=1}^{N/2}[\alpha_c s_{si}+\alpha_s s_{ci}+n_{si}]{\rm sinc}\left(Wt-i \right), \end{aligned} 由此,我们可以得到
    (2) r = 2 N 0 0 T r 2 ( t ) d t = 1 N 0 0 T [ r c 2 ( t ) + r s 2 ( t ) ] d t , \tag{2} \begin{aligned} r=&\frac{2}{N_0}\int_{0}^{T}r^2(t)dt\\ &=\frac{1}{N_0}\int_{0}^{T}\left[ r_c^{2}(t)+r_s^{2}(t)\right]dt\\ \end{aligned},

H 1 : r = 1 N 0 W [ i = 1 N / 2 ( α c s c i α s s s i + n c i ) 2 + i = 1 N / 2 ( α c s s i + α s s c i + n s i ) 2 ] = i = 1 N / 2 ( α c s c i α s s s i + n c i N 0 W ) 2 + i = 1 N / 2 ( α c s s i + α s s c i + n s i N 0 W ) 2 \begin{aligned} H_1:\qquad r&=\frac{1}{N_0W}\left[ \sum_{i=1}^{N/2}(\alpha_c s_{ci}-\alpha_s s_{si}+n_{ci})^2+\sum_{i=1}^{N/2}(\alpha_c s_{si}+\alpha_s s_{ci}+n_{si})^2\right]\\ &=\sum_{i=1}^{N/2}\left(\frac{\alpha_c s_{ci}-\alpha_s s_{si}+n_{ci}}{\sqrt{N_0W}}\right)^2+\sum_{i=1}^{N/2}\left(\frac{\alpha_c s_{si}+\alpha_s s_{ci}+n_{si}}{\sqrt{N_0W}}\right)^2 \end{aligned} 满足非中心 χ 2 \chi^2 分布,方差 σ 2 = 1 \sigma^2=1 ,非中心参数为 μ = 2 γ \mu=2\gamma γ = α E s N 0 \gamma=\frac{\alpha E_s}{N_0}


  我们来推导下非中心参数:
μ = i = 1 N / 2 ( α c 2 s c i 2 N 0 W + α s 2 s s i 2 N 0 W ) + i = 1 N / 2 ( α c 2 s s i 2 N 0 W + α s 2 s c i 2 N 0 W ) = α c 2 N 0 i = 1 N / 2 s c i 2 W + α s 2 N 0 i = 1 N / 2 s s i 2 W + α c 2 N 0 i = 1 N / 2 s s i 2 W + α s 2 N 0 i = 1 N / 2 s c i 2 W = 2 α 2 E s N 0 \begin{aligned} \mu&=\sum_{i=1}^{N/2}\left(\frac{\alpha_c^2 s^2_{ci}}{{N_0W}}+\frac{\alpha_s^2 s^2_{si}}{{N_0W}}\right)+\sum_{i=1}^{N/2}\left(\frac{\alpha_c^2 s^2_{si}}{{N_0W}}+\frac{\alpha_s^2 s^2_{ci}}{{N_0W}}\right)\\ &=\frac{\alpha_c^2}{N_0} \sum_{i=1}^{N/2}\frac{s^2_{ci}}{{W}}+\frac{\alpha_s^2}{N_0} \sum_{i=1}^{N/2}\frac{s^2_{si}}{{W}}+\frac{\alpha_c^2}{N_0} \sum_{i=1}^{N/2}\frac{s^2_{si}}{{W}}+\frac{\alpha_s^2}{N_0} \sum_{i=1}^{N/2}\frac{s^2_{ci}}{{W}}\\ &=\frac{2\alpha^2 E_s}{N_0} \end{aligned}


因此, r r 的概率密度函数可以表示为
f R ( r ) = { r N 2 1 e r 2 σ 2 σ N 2 N 2 Γ ( N 2 ) , H 0 1 2 σ 2 ( r μ ) N 2 4 e μ + r 2 σ 2 I N 2 1 ( μ r σ 2 ) , H 1 , f_R(r)=\left\{\begin{aligned} \frac{r^{\frac{N}{2}-1}e^{-\frac{r}{2\sigma^2}}}{\sigma^N2^{\frac{N}{2}}\Gamma(\frac{N}{2})},&\quad H_0\\ \frac{1}{2\sigma^2}(\frac{r}{\mu})^{\frac{N-2}{4}}e^{-\frac{\mu+r}{2\sigma^2}}I_{\frac{N}{2}-1}(\frac{\sqrt{\mu r}}{\sigma^2}),&\quad H_1, \end{aligned}\right. 这里的 I v ( ) I_v(\cdot) v v 阶第一类修正贝塞尔函数。

2、AWGN信道上的检测概率与虚警概率

  为了计算检测与虚警概率,有很多近似方法。下面我们主要讨论高斯分布来近似。我们知道,随着样本数 N N 的增大,根据中心极限定理,可以认为 y y 的分布接近高斯分布。
  我们知道检测变量 r r 满足如下分布:
r { χ N 2 , H 0 χ N 2 ( μ ) , H 1 r\sim \left\{\begin{aligned} \chi_N^2,&\quad H_0\\ \chi_N^2(\mu),&\quad H_1 \end{aligned} \right. 这里 μ = 2 E s α 2 N 0 = 2 γ \mu=\frac{2E_s\alpha^2}{N_0}=2\gamma ,显然 γ \gamma 为信噪比。


用高斯分布近似卡方分布:
  若 m = i = 1 N r i 2 m=\sum_{i=1}^{N}r_i^2 ,其中 r i N ( 0 , σ 2 ) r_i\sim {\mathcal N}(0,\sigma^2) ,显然 m σ 2 \frac{m}{\sigma^2} 为自由度等于 N N 的卡方分布。当 N N 足够大时,我们可以把卡方分布近似成高斯分布。由于 ( r i σ 2 ) 2 (\frac{r_i}{\sigma^2})^2 的均值1,方差为2,因此 r i r_i 的均值为 σ 2 \sigma^2 ,方差为 2 σ 4 2\sigma^4 ,因此有
m N ( N σ 2 , 2 N σ 4 ) . m\sim {\mathcal N}(N\sigma^2,2N\sigma^4).
  若 m = i = 1 N r i 2 m=\sum_{i=1}^{N}r_i^2 ,其中 r i N ( s , σ 2 ) r_i\sim {\mathcal N}(s,\sigma^2) ,显然 m σ 2 \frac{m}{\sigma^2} 为自由度等于 N N 的非中心卡方分布,其均值为 N s + N Ns+N ,方差为 2 ( N + 2 N s 2(N+2Ns ),这里 N s = μ Ns=\mu 为非中心参数。同样当 N N 足够大时,我们将其近似为高斯分布。此时 r i r_i 的均值为 N ( 1 + s ) σ 2 = ( N + μ ) σ 2 N(1+s)\sigma^2=(N+\mu)\sigma^2 ,方差为 2 N ( 1 + 2 s ) σ 4 = 2 ( N + 2 μ ) σ 4 2N(1+2s)\sigma^4=2(N+2\mu)\sigma^4 ,因此有
m N ( ( N + μ ) σ 2 , 2 ( N + 2 μ ) σ 4 ) ) . m\sim {\mathcal N}\left((N+\mu)\sigma^2,2(N+2\mu)\sigma^4)\right).


N N 足够大时,我们可以把卡方分布近似成均值为
m r = { N σ 2 ; H 0 ( N + μ ) σ 2 ; H 1 m_r=\left\{ \begin{aligned} N\sigma^2;&\quad H_0\\ (N+\mu)\sigma^2;&\quad H_1 \end{aligned}\right. 方差为
σ r 2 = { 2 N σ 4 ; H 0 2 ( N + 2 μ ) σ 4 ; H 1 \sigma^2_r=\left\{ \begin{aligned} 2N\sigma^4;&\quad H_0\\ 2(N+2\mu)\sigma^4;&\quad H_1 \end{aligned}\right.
的高斯分布,即 r N ( m r , σ r 2 ) r\sim {\mathcal N}(m_r,\sigma^2_r)
  若判决门限设为 η \eta ,则检测概率为
P d = P r ( r > η H 1 ) = Q [ η E ( r H 1 ) V a r ( r H 1 ) ] , P_d={\rm Pr}(r>\eta|H_1)=Q\left[\frac{\eta-{\rm E}(r|H_1)}{\sqrt{{\rm Var}(r|H_1)}} \right], 虚警概率为
P f = P r ( r > η H 0 ) = Q [ η E ( r H 0 ) V a r ( r H 0 ) ] . P_f={\rm Pr}(r>\eta|H_0)=Q\left[\frac{\eta-{\rm E}(r|H_0)}{\sqrt{{\rm Var}(r|H_0)}} \right].
  显然,不同门限值大小,会影响 P d P_d P f P_f 。此外,我们还有漏检概率为
P m = 1 P d . P_m=1-P_d.
  图1给出了漏检概率 P m P_m 随虚检概率( P f P_f )变化的曲线,这里没有考虑衰落,即 α = 1 \alpha=1 。显然, P m P_m 随着 P f P_f 的增加而减少。我们还可以发现,随着信噪比 γ \gamma 的增大,曲线下面积在减少,因此检测性能变好。
在这里插入图片描述            图1 漏检概率( P m P_m )与虚检概率( P f P_f )关系曲线

猜你喜欢

转载自blog.csdn.net/tanghonghanhaoli/article/details/96276572