08-求解Ax=b:可解性和解的结构

一、增广矩阵

 假设我们要求解方程$Ax=b$,其中矩阵$A$和$b$如下所示:

$A = \left[\begin{array}{llll}{1} & {2} & {2} & {2} \\ {2} & {4} & {6} & {8} \\ {3} & {6} & {8} & {10}\end{array}\right]$

$b = \left[\begin{array}{llll}{b_1}\\ {b_2}\\{b_3}\end{array}\right]$

 我们可以在矩阵$A$右侧加上一列b,得到:

$\left[\begin{array}{llll}{1} & {2} & {2} & {2} & {b_1} \\ {2} & {4} & {6} & {8}& {b_2} \\ {3} & {6} & {8} & {10}& {b_3}\end{array}\right]$

此即为增广矩阵:即A和b一块二考虑

 

二、可解性

 方程$Ax=b$可解的条件是:当$b$属于$A$的列空间时

 换一种说法:如果矩阵$A$各行的线性组合得到零行,那么$b$分量执行相同的操作也必须得到零向量(参考上面的矩阵$A$)

 

三、求$Ax=b$所有解

 第一步:求一个特解

  将所有自由变量设为0

  我们将增广矩阵进行消元后:

$\begin{array}{l}{\left[\begin{array}{}{1} & {2} & {2} & {2} & {b_{1}} \\ {0} & {0} & {2} & {4} & {b_{2}-2 b_{1}} \\ {0} & {0} & {0} & {0} &{b_{3}-b_{2}-b_{1}}\end{array}\right]} \\ {} \end{array}$

  方程有解的条件便是:$O=b_{3}-b_{2}-b_{1}$,假设$b=\left[\begin{array}{l}{1} \\ {5} \\ {6}\end{array}\right]$,则消元矩阵为:

$\begin{array}{l}{\left[\begin{array}{}{1} & {2} & {2} & {2} & {1} \\ {0} & {0} & {2} & {4} & {3} \\ {0} & {0} & {0} & {0} &{0}\end{array}\right]} \\ {}\end{array}$

  然后求出主变量:

   针对上面的例子,$x_2, x_4 = 0$,则求主变量过程简化为:

$x_{1}+2 x_{3}=1$
$2 x_{3}=3$

   于是一个特解为:$x_p = \left[\begin{array}{c}{-2} \\ {0} \\ {3/2} \\ {0}\end{array}\right]$

 

  还记得07)节中的零空间吗?可以去看看,于是我们的通解为:即特解和零空间

$X = \left[\begin{array}{c}{-2} \\ {0} \\ {3/2} \\ {0}\end{array}\right]+C_{1}\left[\begin{array}{c}{-2} \\ {1}\\ {0} \\ {0}\end{array}\right]+ C_{2}\left[\begin{array}{c}{2} \\ {0} \\ {-2} \\ {1}\end{array}\right]$

猜你喜欢

转载自www.cnblogs.com/always-fight/p/11412421.html
今日推荐